Генрих Бурмин - Штурм абсолютного нуля

На нашем литературном портале можно бесплатно читать книгу Генрих Бурмин - Штурм абсолютного нуля, Генрих Бурмин . Жанр: Детская образовательная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Генрих Бурмин - Штурм абсолютного нуля
Название: Штурм абсолютного нуля
Издательство: -
ISBN: -
Год: -
Дата добавления: 22 февраль 2019
Количество просмотров: 297
Читать онлайн

Помощь проекту

Штурм абсолютного нуля читать книгу онлайн

Штурм абсолютного нуля - читать бесплатно онлайн , автор Генрих Бурмин
1 ... 4 5 6 7 8 ... 34 ВПЕРЕД

Криостат недолго оставался неразделимой частью аппаратуры для сжижения газов. Скоро этот процесс был видоизменен, так что жидкость из расширительной емкости выпускали через отводную трубку в криостат, который потом можно было отсоединить от установки. Это значительно упростило манипуляции с жидким газом и облегчило проведение экспериментов.

В ту пору криостат представлял сосуд для жидкого газа, погруженный в стеклянный стакан, который был соединен с сосудом пробкой. Получался резервуар с двойными стенками. На дно стакана помещался сушильный агент (вещество, способное впитывать влагу), поглощающий водяные пары в пространстве между стеклянными стенками, препятствующий таким образом образованию изморози.

Теперь во время чтения лекций Дьюар вносил в лекционный зал жидкий кислород, приготовленный заранее, и демонстрировал его свойства перед слушателями.

За десять лет, прошедших с момента первого удачного опыта сжижения кислорода, техника эксперимента в области криогеники шагнула вперед.

Но исследователей, стремящихся продолжать марш к абсолютному нулю, тревожило одно немаловажное обстоятельство.

Для превращения жидкости в пар требуется некоторое количество тепла, называемое скрытой теплотой парообразования или испарения. Теплота испарения кислорода, в пересчете на один грамм, в десять раз меньше, чем у воды. Поэтому для сохранения кислорода в жидком состоянии более или менее продолжительное время криостат нуждался в хорошей тепловой изоляции. А скрытая теплота испарения водорода, согласно оценке ученых того времени, по крайней мере в четыре раза меньше скрытой теплоты испарения кислорода.

Это означало, что если водород все‑таки удастся сжижить, то его нельзя будет сохранить в течение какого‑либо времени в криостате применяемой тогда конструкции.

На лекции 20 января 1893 года Дьюар демонстрирует вакуумный сосуд, получивший впоследствии его имя, столь совершенной конструкции, что она осталась неизменной вплоть до наших дней[2].

Читатель уже знает, что первоначально в течение ряда лет применялись криостаты с двойными стенками, пространство между которыми можно было освободить только от водяных паров. Дьюар существенно усовершенствовал конструкцию криостата, откачав воздух из пространства между стенками до глубокого вакуума. В результате резко уменьшился теплообмен между окружающей средой и веществом, находящимся внутри сосуда. Для уменьшения тепловых потерь посредством излучения поверхности стенок, образующих вакуумное пространство, покрываются тонким слоем серебра и полируются.

На лекции Дьюар с присущим ему артистическим блеском продемонстрировал преимущество своего изобретения по сравнению со старым типом криостата. Сначала он показал жидкий кислород, находящийся в спокойном состоянии, словно обычная вода.

Затем он отломил носик на стеклянном баллоне; как только воздух попал между стенками, жидкий кислород начал интенсивно кипеть.

Изобретение Дьюаром вакуумного сосуда — огромный шаг вперед в технике низких температур.

Возможность длительного хранения жидких газов в сосудах Дьюара позволила теперь исследователям проводить эксперименты со значительно большими количествами жидкого газа, исчисляющимися уже не кубическими сантиметрами, а литрами.

Решив эту проблему, Дьюар смог непосредственно заняться сжижением водорода.

Какие выводы он смог сделать из опыта своих предшественников?

В первом эксперименте Кальете охлаждение достигалось за счет истечения струи газа из сосуда со сжатым газом. Газ расширялся, и его температура понижалась.

Это был процесс до некоторой степени стихийный и неуправляемый. Напомним, что первоначально струя газа вырвалась из сосуда против воли экспериментатора — в результате аварии. Эффективность такого процесса относительно невелика.

А что, если струю не выпускать в атмосферу, а заставлять газ работать?

Так возникла идея детандера.

Что такое детандер? Попросту говоря, это цилиндр с поршнем.

Газ сжимается с помощью специальной машины — компрессора до давления в десятки, а иногда сотки атмосфер. Сжимаясь, газ нагревается, а это как раз и не нужно! После компрессора газ поступает в теплообменник, представляющий собой змеевик, обтекаемый проточной водой. Здесь газ восстанавливает свою первоначальную температуру.

Затем он попадает в детандер, где толкает поршень, совершая при этом механическую работу. В результате расширения в условиях отсутствия теплообмена с окружающей средой происходит уменьшение внутренней энергии газа, и его температура падает.

После охлаждения газ поступает в холодильную камеру. Отнимая тепло у охлаждаемого тела, газ нагревается и возвращается в компрессор, чтобы снова пройти весь цикл.

Наиболее уязвимым местом этого охлаждающего устройства является собственно детандер. Перемещающийся в цилиндре поршень требует смазки. Между тем смазочный материал, не твердеющий при очень низкой температуре, подобрать трудно.

Не менее сложная проблема — создать уплотнение между цилиндром и поршнем, необходимое для предотвращения утечки газа. К тому же детандер- ный способ охлаждения действует тем хуже, чем ниже температура.

Может быть, можно обойтись без поршня и других движущихся частей?

И Дьюар вспоминает об интересном явлении, обнаруженном еще в 1853–1854 годах английскими учеными Джеймсом Джоулем и Уильямом Томсоном и получившем название эффекта Джоуля — Томсона (дроссельного эффекта).

Суть этого эффекта заключается в изменении температуры газа при прохождении через теплоизолированный дроссель, то есть суженное отверстие (пористую перегородку, вентиль), в направлении от большего давления к меньшему.

Газ проходит через суженное отверстие стационарно: перед дросселем и после него давление должно оставаться постоянным.

До дросселя оно такое, какое создается компрессором, например, десять атмосфер, а после дросселя оно может быть равно, например, одной атмосфере.

Один и тот же газ может иметь при разных температурах и различных начальных давлениях разный по знаку эффект Джоуля — Томсона: положительный (газ охлаждается) или отрицательный (газ нагревается).

Изменение знака эффекта Джоуля — Томсона называется инверсией.

Для большинства газов при комнатной температуре эффект Джоуля — Томсона положителен в широком интервале давлений. Для водорода эффект Джоуля — Томсона в обычных условиях отрицательный. Однако при достаточно низких температурах наступает инверсия: эффект Джоуля — Томсона становится положительным (газ охлаждается).

Забегая вперед, следует заметить, что способ дросселирования и усовершенствованный детандер- ный способ (к нему мы вернемся позже) являются основными для получения холода в современной технике.

Не будем нарушать хронологию повествования.

В начале 1896 года Дьюар публикует статью, где описывает эксперименты с газообразным водородом, осуществленные на его установке, основанной на использовании эффекта Джоуля — Томсона.

Дьюар отмечал, что он не наблюдал никакого охлаждения водорода, когда поступавший в установку газ имел комнатную температуру. Впрочем, ничего другого он не ожидал.

Однако газ, предварительно охлажденный жидким воздухом, поддавался дальнейшему охлаждению. Правда, никаких признаков его сжижения не наблюдалось.

Чтобы показать, насколько низка была температура газообразного водорода, Дьюар направлял струю газа из сопла на жидкий кислород. Последний замерзал, превращаясь в твердое вещество светло — голубого цвета. По оценке Дьюара температура струи была на 20–30 градусов выше абсолютного нуля. Теперь он был уверен, что сжижение водорода вполне осуществимо.

Наконец Дьюар добивается успеха. 10 мая 1898 года он получает 20 кубических сантиметров жидкого водорода, который спокойно кипел в вакуумном сосуде. А еще через год он одерживает свою последнюю победу — переводит водород в твердое состояние.

Вот как это произошло.

Первые попытки Дьюара получить водород в твердой фазе путем откачки паров из сосуда с жидким водородом потерпели неудачу.

Оказалось, что скрытая теплота испарения водорода еще меньшая, чем это предполагалось раньше. Поэтому приток тепла в криостат извне был достаточно велик, чтобы полностью компенсировать то понижение температуры, которое можно получить, испаряя жидкость.

Тогда Дьюар поместил сосуд с жидким водородом в другой сосуд, наполненный жидким воздухом. Внешний сосуд служил как бы экраном, препятствующим притоку тепла извне в центральную часть криостата.

Когда давление паров над поверхностью жидкого водорода упало до пяти миллиметров ртутного столба, в жидкости появилось некоторое подобие пены, которая при дальнейшей откачке превратилась в прозрачную твердую массу.

1 ... 4 5 6 7 8 ... 34 ВПЕРЕД
Комментариев (0)
×