Сергей Сказкин - ИСТОРИЯ СРЕДНИХ ВЕКОВ (В двух томах. Под общей редакцией С.ДСказкина). Том 2

На нашем литературном портале можно бесплатно читать книгу Сергей Сказкин - ИСТОРИЯ СРЕДНИХ ВЕКОВ (В двух томах. Под общей редакцией С.ДСказкина). Том 2, Сергей Сказкин . Жанр: История. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Сергей Сказкин - ИСТОРИЯ СРЕДНИХ ВЕКОВ (В двух томах. Под общей редакцией С.ДСказкина). Том 2
Название: ИСТОРИЯ СРЕДНИХ ВЕКОВ (В двух томах. Под общей редакцией С.ДСказкина). Том 2
Издательство: неизвестно
ISBN: нет данных
Год: -
Дата добавления: 28 январь 2019
Количество просмотров: 217
Читать онлайн

Помощь проекту

ИСТОРИЯ СРЕДНИХ ВЕКОВ (В двух томах. Под общей редакцией С.ДСказкина). Том 2 читать книгу онлайн

ИСТОРИЯ СРЕДНИХ ВЕКОВ (В двух томах. Под общей редакцией С.ДСказкина). Том 2 - читать бесплатно онлайн , автор Сергей Сказкин
1 ... 95 96 97 98 99 ... 102 ВПЕРЕД

Вклад в начатую Галилеем огромную работу по выяснению подлинных законов движения материальных тел внес и французский ученый Рене Декарт, сформулировавший, в частности, в более общем виде закон инерции (1644).

Зарождение и укрепление новых принципов научного исследования знаменовало начало бурного развития физики. Помимо механики начинают быстро развиваться и другие ее разделы. Важные открытия были сделаны в физике жидких и газообразных тел. Французский математик и физик Блез Паскаль (1623-1662), известный также как философ и писатель, успешно продолжил разработку вопросов гидростатики и в общем виде сформулировал названный его именем закон о передаче давления в жидкостях. Ученик Галилея Торичелли (1608– 1647) изучал атмосферное давление и создал ртутный барометр, получив в запаянной трубке пустое пространство над ртутью (торичеллиева пустота). Он отверг старое учение о «боязни пустоты» и утверждал, что ртуть в столбике барометра поддерживается именно атмосферным давлением. Правильность этого мнения экспериментально доказал Паскаль, организовав серию опытов с барометром, устанавливавшимся на различных уровнях горного склона. Немецкий инженер и бургомистр Магдебурга Отто фон Герике (1602-1686) изобрел воздушный насос и поставил эффектный эксперимент, также подтвердивший существование атмосферного давления и обнаруживший всю его силу (при помощи так называемых магдебургских полушарий). Английский физик и химик Роберт Бойль (1627-1691) и французский ученый Мариотт (1620-1684) открыли независимо друг от друга названный их именами закон о соотношении объема газа с оказываемым на него давлением. Быстро развивалась также и оптика, чему способствовала работа по созданию и совершенствованию появившихся в это время оптических приборов (зрительная труба, телескоп, микроскоп), требовавшая изучения законов распространения и преломления световых лучей; важную роль в развитии оптики сыграли труды Кеплера («Диоптрика») и Декарта. Подъем научной мысли и потребность развивающейся науки, особенно астрономии и механики, в более совершенных методах математического исследования привели к быстрому развитию математики.

Развитие математики

Еще ученые Древней Греции и особенно средневекового Востока были знакомы с элементами алгебры, умели, например, решать уравнения первой и второй степени. В XVI в. новые открытия в этой области следовали одно за другим. Итальянские математики, в том числе Тарталья и Кардано (1501-1576), разработали способ решения уравнения третьей степени (формула Кардано). Один из учеников Кардано открыл способ решения уравнений четвертой степени. Для сложных вычислений (особенно в астрономии) были изобретены логарифмы. Первые таблицы логарифмов (Непера) появились в 1614 г .

Вырабатывалась система математических символов для записи алгебраических выражений и производства алгебраических действий. До XV в. буквы употреблялись в алгебре далеко не всегда и лишь для обозначения искомых неизвестных величин, алгебраические же действия записывались посредством слов при помощи громоздких фраз. Уравнения составлялись и решались только с определенными числовыми коэффициентами. С XV в. и до середине XVII в. во всеобщее употребление входят определейШе. –знаки . дляааяиси-. алгебра11чесш1Х действий (знаки сложения, вычитания, возведения в степень и т. д.), вводятся буквенные обозначения не только для неизвестных, но и для всех других величин. Благодаря последнему нововведению, связанному с именем французского математика Виета (1540-1603), впервые стало возможным в общей форме ставить и решать алгебраические задачи, появились алгебраические-фермулдд—АлЕеб—аическая символика получила дальнейшее развитие в трудах Декарта, который придал ей почти современный вид; в частности, он ввел принятые теперь знаки для обозначения неизвестных величин (последние буквы латинского алфавита – х, у, z). Одновременно с алгеброй развивалась тригонометрия, которая из подсобной дисциплины астрономии превратилась в особый раздел математической науки.

В это же время зарождаются некоторые совершенно новые разделы математики. Декарт и французский математик Ферма создали аналитическую геометрию, установив путем метода координат связь между геометрией и алгеброй. Математики первой половины XVII в. – Ферма, Кавальери, Паскаль, Декарт, Кеплер и другие разработали отдельные вопросы анализа бесконечно малых величин, подготовив почву для создания во второй половине столетия дифференциального и интегрального исчисления (И. Ньютон и Г. В. Лейбниц).

Возникновение новых отраслей математики имело огромное принципиальное значение. Началось изучение переменных величин и функциональной зависимости между ними. Вырабатываются математические методы, впервые позволившие подвергнуть точному анализу процессы движения в природе, явления материального мира в их изменениях и диалектических связях. Возникновение новых математических дисциплин было одним из необходимых условий последующих успехов в изучении природы.

Развитие химии, геологии, географии, ботаники, зоологии и т. д. сводилось главным образом к накоплению и описанию новых фактов. Однако в этом отношении были достигнуты значительные успехи. Была преодолена традиция черпать фактический материал, идеи и концепции из сочинений античных авторов. Основное внимание стало уделяться непосредственному и самостоятельному изучению природы.

В химии были открыты неизвестные ранее вещества, изучались их свойства, чему способствовали развитие красильного дела, некоторых химических производств, медицины (все шире использовавшей различные химические соединения в лечебных целях), горного дела и металлургии, а также все еще продолжавшая процветать алхимия. Хотя алхимики ставили перед собой фантастические цели, однако в процессе многочисленных и упорно повторяемых опытов они часто эмпирическим путем приходили к выяснению химических свойств многих веществ.

Возрос запас знаний по геологии и минералогии. Крупнейшие работы в этой области принадлежат немецкому ученому Георгу Бауэру (1494-1555), более известному под латинизированным именем Агриколы. Они чрезвычайно интересны для истории горного дела.

В результате великих географических открытий произошло расширение географических знаний. К середине XVII в. были в основном установлены общие очертания материков на большей части земного шара. Неизученными оставались труднодоступные Арктика и Антарктика, частично район Австралии. Были получены новые данные о морских течениях, ветрах, климатических явлениях, в частности о неизвестном ранее европейцам климате экваториального пояса и т. д. Развивались связанные с географией специальные дисциплины. Разрабатывались научные основы картографии и создавались более точные карты. Большие заслуги в развитии картографии принадлежат Герхардту Кремеру (1512-1594), вошедшему в историю науки под латинизированным именем Меркатора (родился во Фландрии, с 1552 г . жил в Германии). Он создал одну из основных картографических проекций, названную его именем.

В области ботаники и зоологии появились многотомные, снабженные зарисовками описания растений и животных, например «История животных» швейцарского ученого-филолога, библиографа и натуралиста Конрада Геснера (1516-1565). Были организованы ботанические сады, сначала в Италии, затем и в других странах Западной Европы. Впервые появились гербарии, научные музеи; предпринимались попытки классификации растений на основе определенных признаков.

Значительные успехи были достигнуты в изучении человеческого организма, происходит пересмотр взглядов, господствовавших в античной и средневековой медицине. Швейцарский химик (и алхимик), биолог и врач Филипп Теофраст фон Гогенгейм, принявший латинизированное имя Парацельс (1493-1541), пытался создать новую теорию о природе человеческого организма и методах лечения болезней. Систематически производились тщательные анатомические вскрытия, знаменовавшие зарождение научной анатомии. Провозвестником новых идей был Везалий (1514-1564), родившийся в Брюсселе, но сделавший свои основные открытия в Италии, где он опубликовал труд «О строении человеческого тела». Теория кровообращения – фундамент для последующего развития физиологии человека и животных, – подготовленная работами испанского ученого Мигеля Сервета (из-за его религиозных взглядов казнен в 1553 г . в кальвинистской Женеве), была разработана английским врачом Вильямом Гарвеем (1578-1658).

Изобретение микроскопа позволило исследовать невидимые невооруженным глазом детали строения растений и живых организмов. Голландец Левенгук (1632-1723) открыл микроорганизмы. Началось изучение при помощи микроскопа строения живой ткани. Развитие науки происходило в тесной связи

Связь развития р развитием новой философии. Борьбой против естествознания — ———r r с новой философией средневековой схоластики представители передовой философской мысли устраняли препятствие на пути дальнейшего развития науки и способствовали выработке более правильных общих теоретических представлений о природе. Наибольшую роль сыграли два философа – Фрэнсис Бэкон и упоминавшийся выше математик и физик француз Рене Декарт.

1 ... 95 96 97 98 99 ... 102 ВПЕРЕД
Комментариев (0)
×