Владимир Крупин - Карлики рождают гигантов

На нашем литературном портале можно бесплатно читать книгу Владимир Крупин - Карлики рождают гигантов, Владимир Крупин . Жанр: Биология. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Владимир Крупин - Карлики рождают гигантов
Название: Карлики рождают гигантов
Издательство: -
ISBN: нет данных
Год: -
Дата добавления: 13 февраль 2019
Количество просмотров: 213
Читать онлайн

Помощь проекту

Карлики рождают гигантов читать книгу онлайн

Карлики рождают гигантов - читать бесплатно онлайн , автор Владимир Крупин
1 ... 37 38 39 40 41 ... 43 ВПЕРЕД

Пожалуй, вернее всего будет сравнить клетку с индустриальным комплексом. Это огромный комбинат со своей электростанцией, топливным хозяйством, конструкторским бюро, вычислительным центром, транспортным и производственными цехами. Его продукция — живая жизнь.



Рассмотрим производственную схему комбината.

Его площадь достигает примерно 30 микрон.

Клеточное ядро — это своеобразное заводоуправление, где сосредоточены командные высоты, штаб управления производством. Хромосомы — это различные отделы управления. Они обслуживаются единым кибернетическим центром — дезоксирибонуклеиновой кислотой. Как и подобает вычислительной управляющей машине, ДНК «переполнена идеями». В ней содержится (оценка С. Бензера) около 200 тысяч пар нуклеотидов, которые по количеству заключенной в них информации соответствуют нескольким страницам газеты. ДНК руководит основным процессом производства на комбинате — синтезом белка. Он осуществляется в рибосомах, частицах, разбросанных по всей территории клетки. Рибосомы — это «синтетические фабрики», где вырабатывается главный биополимер — белок. Основное сырье для производства — 20 совершенно отличных одна от другой аминокислот. Как будто бы немного. Но любой математик скажет нам, что из двадцати деталей можно собрать 2 432 902 008 176 640 000 различных блоков.

В молекуле обычного белка содержится около 500 аминокислот. И хотя большинство из них одинаково (из числа 20), число возможных комбинаций вырастает до астрономических масштабов. Оно выражается единицей с 600 нулями. Вероятно, что эта цифра превышает общее число атомов на нашей планете.

Но изо всего этого хаоса вероятных комбинаций кибернетический центр клетки отбирает строго определенные варианты. Каждый, кто хоть немного знаком с принципом действия ЭВМ — электронно-вычислительных машин, помнит, что они производят сложнейшие расчеты, оперируя всего двумя знаками — единицей и нулем. ДНК отдает точные распоряжения по всему хозяйству, имея на вооружении четыре буквы: А, Г, Т, Ц. Приказ-чертеж, выданный ДНК, поступает в информационный центр. Его роль играет и-РНК — информационная рибонуклеиновая кислота. Транспортная РНК (т-РНК) переносит чертеж на фабрику белковых молекул. Здесь, в рибосоме, куда непрерывно поставляется сырье — аминокислоты, под руководством инженеров-ферментов, каждый из которых управляет определенным участком, осуществляется синтез. Вернее, монтаж. На матричной РНК (м-РНК) мгновенно «собирается» нужный белок. Комбинат состоит из десятков тысяч фабрик. Размер каждой — около 200 ангстрем.

Энергию всему комбинату поставляют силовые установки. Это митохондрии, особые частицы, где в результате химических реакций вырабатывается энергия, необходимая для нормальной функции клетки. Она запасается в форме энергии АТФ. АТФ поступает из «турбин» в цитоплазму и начинает свою работу по активированию аминокислот. Эта работа ведется тоже под руководством инженеров — ферментов. Они размещаются в митохондриях, образуя специализированные системы — отделы. Как велико их число, можно себе представить, зная, что внутри клетки действует несколько тысяч подобных «силовых станций».

Особую роль в структуре управления производством играют лизосомы. Они расположены вне ядра и следят за порядком на заводской территории. В них сосредоточены ферменты гидролиза, которые вступают в действие по мере надобности.

Еще одна заводская служба — аппарат Гольджи (по имени итальянского ученого, открывшего его в конце прошлого века). Аппарат Гольджи состоит из мембран и пузырьков. Канальцы и полости между мембранами, по-видимому, обеспечивают передвижение веществ, важных для жизнедеятельности клетки. Предполагают, что здесь происходит уплотнение и формирование тех молекул, которые клетка выделяет во внешнюю среду. Упаковочный цех? Пожалуй.

Вероятно, по-видимому, пожалуй… Нам приходится употреблять столь неопределенные термины не случайно. В механизме управления клеткой еще много неясного для науки. Открытия в области молекулярной биологии следуют одно за другим. Проливая новый свет на знакомые явления, открывая новые закономерности, ученые неизбежно встают перед новыми проблемами. Каждый шаг вперед открывает новые горизонты, загадывает новые загадки. Вот один из последних примеров.

Молодой ученый, член-корреспондент АН СССР А. С. Спирин, вместе со своими сотрудниками наполнил понятие гена новым биохимическим содержанием. Выяснилось, что и-РНК «по команде» гена расставляет аминокислоты, которые «выстраиваются» во время синтеза в молекулу белка. Шаг вперед? Безусловно. Но более подробных сведений о роли и-РНК пока нет. Возникает новый круг проблем, без выяснения которых невозможно познать закономерности белкового синтеза. Не познаешь закономерности — не сумеешь управлять ими или хотя бы использовать их в своих интересах. Эта истина очевидна.

Очевидно и другое. Наукой накоплено колоссальное количество фактов. Разрозненные, на первый взгляд не связанные друг с другом явления понемногу начинают складываться на наших глазах в определенную систему.

Мы представили клетку комбинатом по синтезу белка. Нарисовать эту картину мы смогли только благодаря усилиям многотысячной армии ученых, представителей разных стран и разных профессий. Словно на листе фотобумаги в проявляющем растворе перед нашим взором проступают основные контуры этой картины. Многие детали еще не проработаны. На бумаге отчетливо видны штрихи, линии и точки.

Как они связаны между собой? Что именно изображают? О чем-то мы догадываемся. Чего-то предугадать не можем. Но процесс проявления продолжается, и картина становится все более полной. Начинают проявляться общие свойства клетки как единой взаимосогласованной кооперативной системы. До сих пор основным методом исследования клетки был анализ. Процессы, происходящие в живом организме, основательно изучены. Отдельные факты систематизированы и разложены по полочкам. На полотне, нарисованном великим художником — Жизнью, мы видим великолепные уверенные мазки. Мы различаем цвета и структуру, знаем происхождение красок и даже кисти, которой пользовался мастер. Но мы смотрим пока на полотно сквозь увеличительное стекло. Настало время отойти от картины на несколько шагов, чтобы увидеть ее всю сразу. Ученые все более ощущают необходимость «целостного» подхода к проблеме.

…Отступление восьмое. О коллективности в науке.

XX век — век неслыханной специализации науки. Она неизбежна. Человечество вовлекает в сферу своей деятельности, в свой быт все новые и новые явления и факты действительности. Они, естественно, становятся объектами исследований. Их многообразие и новизна порождают многообразие новых отраслей знания. Открытие вирусов повлекло за собой рождение вирусологии. Овладение атомной энергией вызвало к жизни, как мы видели, целый комплекс новых наук. Последовал рывок в космос — и мы заговорили о космической медицине, об астрогеографии…

В этой книге уже был упомянут целый ряд новых и новейших научных дисциплин. Биофизика, биогеохимия, физическая биохимия, биологическая радиоэлектроника, радиационная микробиология, биокибернетика, бионика, молекулярная генетика, биогеоценология… Все эти ветви одного могучего древа науки о жизни. Специализация, — применяя более современную математическую терминологию, лучше сказать «дифференциация», — отвечает духу современного естествознания. Стремление проникнуть в самую суть глубинных процессов жизни, познать их и поставить на службу обществу — такова характерная особенность экспериментальной биологии.

Дифференциация — одна из важнейших тенденций развития науки. Одновременно действует противоположная тенденция — интеграция (снова математический термин!) научных представлений. Она отражает стремление к целостному восприятию явлений («интегер» в переводе с латыни как раз и означает «целый»). А стало быть, и к целостному их пониманию и объяснению.

Естествоиспытатель нашего времени — будь то биофизик, исследующий тончайшие проявления жизни на молекулярном уровне, или земледелец, выращивающий картошку, — имеет дело со сложным биологическим объектом.

Живая клетка, находящаяся в поле зрения биофизика, представляет собой механизм, где действуют тысячи деталей, связанных между собой тысячами взаимосвязей в единое целое. В этом лабиринте биофизик заблудился бы, если бы не помощь химика и цитолога, математика и генетика. Только коллективный опыт науки, разбирающей этот механизм винтик за винтиком и шаг за шагом, позволяет каждому исследователю в отдельности и всей биологии вместе уверенно подвигаться вперед.

Урожай, представляющий предмет заботы земледельца, — это тоже сложный биологический комплекс. В формировании урожая принимают участие тысячи растений, связанных между собой не менее сложными связями. На развитие этого комплекса действуют самые разнообразные факторы. Земные (вода, питательные элементы) и космические (энергия солнца и космические лучи), биологические (микробы, сорняки, болезни, вредители) и агротехнические (севооборот, обработка почвы и ее качество). Действуют все вместе и каждый в отдельности. На любые, порой — малозаметные изменения условий во внешней среде растение реагирует немедля. Что, как и почему изменилось? Чтобы ответить на эти вопросы, мы должны заглянуть в клетки растений. Ибо все изменения — биохимические или физиологические — происходят именно там. В поисках ответа на свои вопросы земледелец неизбежно пользуется коллективным опытом науки — агрохимии, микробиологии, фитопатологии, генетики и т. д.

1 ... 37 38 39 40 41 ... 43 ВПЕРЕД
Комментариев (0)
×