Генри Дьюдени - 200 знаменитых головоломок мира

На нашем литературном портале можно бесплатно читать книгу Генри Дьюдени - 200 знаменитых головоломок мира, Генри Дьюдени . Жанр: Математика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Генри Дьюдени - 200 знаменитых головоломок мира
Название: 200 знаменитых головоломок мира
Издательство: -
ISBN: -
Год: -
Дата добавления: 13 февраль 2019
Количество просмотров: 248
Читать онлайн

Помощь проекту

200 знаменитых головоломок мира читать книгу онлайн

200 знаменитых головоломок мира - читать бесплатно онлайн , автор Генри Дьюдени
1 ... 47 48 49 50 51 ... 53 ВПЕРЕД

148. Путь показан на рисунке. Можно заметить, что десятый ход приводит нас в клетку, отмеченную числом 10, а последний, 21-й ход заканчивается в клетке 21.

149. Пунктирная линия показывает путь, состоящий из 22 прямолинейных отрезков, которым рыцарь добрался до девы. Необходимо, войдя в первую камеру, немедленно вернуться назад, прежде чем войти в другую камеру. Иначе вам не удастся найти решение.

150. Если узник выберет путь, показанный на рисунке, где для простоты не изображены двери, то он посетит каждую камеру по одному разу, пройдя 57 прямо линейных участков. Ни при каком пути ладьи по шахматной доске нельзя превзойти это число.

151. Прежде всего наименьшее число прямолинейных участков в каждом случае равно 22, и, дабы ни одну ячейку не посетить дважды, совершенно необходимо, чтобы каждый зашел в первую камеру, а затем немедленно «посетил» ту, из которой отправился; после этого он должен следовать вдоль пути, указанного на рисунке. Путь человека обозначен сплошной линией, а путь льва — пунктиром. Можно следовать вдоль каждого пути с двумя карандашами в руках и заметить, что человек и лев ни разу не встретились, хотя есть одно место, где они «мелькали в поле зрения друг друга». Далее мы обнаружим, что, двигаясь с постоянной скоростью, они никогда не окажутся в поле зрения друг друга. Однако на рисунке можно заметить, что лев и человек оказываются в камерах, обозначенных буквой А, одновременно и, следовательно, могут увидеть друг друга через открытые двери. То же происходит, когда они оказываются в камерах В, причем верхние буквы в обоих случаях показывают положение человека, а нижние — положение льва. В-первом случае лев устремляется прямо к человеку, тогда как человек, кажется, пытается зайти ко льву с тыла. Второй случай несколько более подозрителен, ибо похоже, что они здесь удирают друг от друга!

152. Я показал на рисунке, каким образом слон может посетить каждое из намеченных мест за 17 ходов. Очевидно, что мы должны начать с одного углового квадрата и закончить в диагонально противоположном. Головоломку нельзя решить за меньшее число ходов.

153. Передвигайте шашки следующим образом: 2—3, 9—4, 10—7, 3—8, 4-2, 7—5, 8—6, 5—10, 6—9, 2—5, 1—6, 6—4, 5—3, 10—8, 4—7, 3—2, 8—1, 7—10. Теперь белые шашки поменялись местами с красными за 18 ходов при соблюдении заданных условий.

154. Играйте следующим образом, используя обозначения, основанные на нумерации клеток на рисунке А.


На рисунке Б показано положение после девятого хода. Слоны на клетках 1 к 20 еще не ходили, но 2 и 19 уже двигались вперед, а затем вернулись назад. В конце 1 и 19, 2 и 20, 3 и 17, 4 и 18 поменяются местами. Обратите внимание на позицию после тринадцатого хода.

155. На приведенном рисунке показан второй вариант турне ферзя. Если вы прервете линию в точке J и уберете более короткий участок этой прямой, то получите искомый путь для любой клетки J. Если вы прервете линию в I, то получите невозвратное решение, начинающееся из любой клетки I. А если вы прервете линию в G, то получите решение для любой клетки G. Ранее приведенное турне ферзя можно также прервать в трех различных местах, однако я воспользовался возможностью привести второе турне.

156. Рисунок говорит сам за себя. Все звезды вычеркиваются за 14 прямолинейных движений, причем путь начинается и заканчивается белой звездой.

157. Решение вы видите на рисунке. Числа показывают направления прямых в их правильном порядке.

Можно заметить, что седьмой курс заканчивается у буя с флажком, как и требовалось.

158. В данном случае мы выходим за границы квадрата. Кроме того, все наши движения производятся ходом ферзя. Существуют 3 или 4 решения задачи.

Здесь приводится одно из них.

Можно заметить, что конькобежец вычеркивает все звездочки за один непрерывный путь, состоящий из 14 прямолинейных участков и возвращающийся в исходную точку. Чтобы проследить этот путь, нужно всегда двигаться по прямой как можно дальше до поворота.

159. На рисунке показано, каким образом все звездочки можно вычеркнуть за 12 прямолинейных движений, начиная и заканчивая черной звездой.

160. Правильное решение головоломки показано на рисунке сплошной линией. За 5 ходов ферзь проходит наибольшее возможное для него при заданных условиях расстояние. Пунктирная линия на исходном рисунке показывает путь, который предлагает большинство читателей, однако он короче первого. Допустим, что расстояние между центрами соседних клеток, расположенных на одной горизонтали или вертикали, равно 2 дюймам и что ферзь движется из центра исходной клетки в центр той клетки, где он останавливается; тогда в первом случае путь превосходит 67,9 дюйма, а во втором — не превышает 67,8 дюйма. Разница не велика, но достаточна для того, чтобы выделить более длинный путь. Все другие пути короче.

161. Выберем в качестве решения этой головоломки один из самых красивых рисунков, какие можно получить, представляя каждый ход отрезком прямой, соединяющим центры соответствующих клеток. Для большей наглядности окраска клеток на рисунке не указана.

Таким образом, святой Георгий настигает дракона в строгом соответствии с условиями и в той элегантной манере, какую мы и могли ожидать от него.

162. Существует много решений этой небольшой сельскохозяйственной задачи. Вариант, который я привел здесь на рисунке, довольно удивителен в том отношении, что содержит длинные участки параллельных прямых, образованных ходами.

163. Имеется ряд интересных моментов, связанных с этой задачей. Прежде всего если на положение двух концов пути не накладывается никаких условий, то совершенно невозможно составить такой путь, если только мы не будем начинать и заканчивать его в верхнем и нижнем рядах конур. Мы можем начинать в верхнем ряду, а заканчивать в нижнем (или, разумеется, наоборот), или же мы можем начинать в одном из этих рядов и заканчивать в нем же. Но мы не можем начинать или заканчивать путь в одном из двух центральных рядов. Однако начало и конец пути фиксированы условиями задачи. И все же первая половина нашего пути должна целиком ограничиваться теми клетками, которые на рисунке отмечены кружками, тогда как вторая половина пути должна, следовательно, ограничиваться клетками без кружков. Можно заметить, что клетки, обведенные для двух полупутей, расположены симметрично.

Следующий момент состоит в том, что первый полупуть должен заканчиваться в одном из центральных рядов, а второй полупуть обязан начинаться в одном из этих рядов. Теперь это очевидно, поскольку полупути должны быть связаны друг с другом, дабы образовать целый путь, а каждая клетка внешнего ряда связана ходом коня лишь с квадратами своего типа (то есть либо с кружками, либо без кружков). Следовательно, полупути могут соединиться лишь в двух центральных рядах.

Далее: существует 8 различных первых полупутей и соответственно столько же вторых полупутей. Можно заметить, что из них удается составить 12 полных путей, а это и есть число различных правильных решений нашей головоломки. Я не собираюсь их здесь полностью перечислять, однако приведу ответ в такой форме, чтобы читатель сам без труда смог их все найти. Следующие числа соответствуют клеткам рисунка с теми же номерами.

Восемь первых полупутей — это от 7 до 6 (2 пути); от 1 до 8 (1 путь); от 1 до 10 (3 пути); от 1 до 12 (1 путь) и от 1 до 14 (1 путь). Восемь вторых полупутей: от 7 до 20 (1 путь); от 9 до 20 (1 путь); от 11 до 20 (3 пути); от 13 до 20 (1 путь) и от 15 до 20 (2 пути). Каждый новый способ, каким вы сумеете связать один полупуть с другим, даст новое решение задачи. Можно определить, что эти связи таковы: с 6 на 13 (2 случая); с 10 на 13 (3 случая); с 8 на 11 (3 случая); с 8 на 15 (2 случая); с 12 на 9 (1 случай) и с 14 на 7 (1 случай). Следовательно, существует 12 различных способов соединения и соответственно 12 различных решений нашей головоломки. Можно показать, что путь, приведенный на рисунке в условии задачи, состоит из одного из трех полупутей, идущих от 1 до 10, и полупути от 18 до 20. Стоит отметить, что 10 решений порождены пятью различными путями и их обращениями; другими словами, если вы отметите на рисунке эти 5 путей линиями, а затем перевернете рисунок вверх ногами, то получите 5 новых путей. Остальные два решения симметричны (в этих случаях 12 связано с 9, я. 14 — c 7), и, следовательно, не порождают новых решений с помощью поворотов.

164. Изящное симметричное решение этой головоломки показано на рисунке. Каждый из четырех кенгуру совершает свою небольшую экскурсию и возвращается в свой угол, ни разу не прыгнув в клетку, посещавшуюся другим кенгуру, и не пересекая центральной прямой. Читателю сразу же придет в голову возможность улучшить головоломку, разделив квадрат вертикальной прямой и потребовав, чтобы кенгуру не пересекали также и ее. Это означало бы, что каждый кенгуру ограничен квадратом 4 х 4, но это невозможно, как я покажу в решении следующих двух головоломок.

1 ... 47 48 49 50 51 ... 53 ВПЕРЕД
Комментариев (0)
×