Эугенио Агиляр - Эврика! Радость открытия. Архимед

На нашем литературном портале можно бесплатно читать книгу Эугенио Агиляр - Эврика! Радость открытия. Архимед, Эугенио Агиляр . Жанр: Научпоп. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Эугенио Агиляр - Эврика! Радость открытия. Архимед
Название: Эврика! Радость открытия. Архимед
Издательство: -
ISBN: -
Год: -
Дата добавления: 14 февраль 2019
Количество просмотров: 251
Читать онлайн

Помощь проекту

Эврика! Радость открытия. Архимед читать книгу онлайн

Эврика! Радость открытия. Архимед - читать бесплатно онлайн , автор Эугенио Агиляр

Ученые и инженеры всегда проявляли интерес к этой конструкции — как в древности, так и в наши дни. Например, в 2005 году был успешно построен «коготь Архимеда» для одной из серий документального сериала «Супероружие древнего мира», что доказало возможность его создания Архимедом.

В своем жизнеописании Марцелла Плутарх также упоминает железную руку:


«На вражеские суда вдруг стали опускаться укрепленные на стенах брусья и либо топили их силою толчка, либо, схватив железными руками или клювами вроде журавлиных, вытаскивали носом вверх из воды, а потом, кормою вперед, пускали ко дну, либо, наконец приведенные в круговое движение скрытыми внутри оттяжными канатами, увлекали за собою корабль и, раскрутив его, швыряли на скалы и утесы у подножия стены, а моряки погибали мучительной смертью».[2 Перевод С. П. Маркиша.]


АРХИМЕД: МИФЫ И РЕАЛЬНОСТЬ

В этой книге представлены и реальные истории, и легенды, сложившиеся вокруг жизни, открытий и изобретений Архимеда. Ниже мы вкратце поговорим о самых ярких моментах, которые связывают с жизнью ученого.

1. «Дайте мне точку опрры, и я переверну Землю!» Сомнительно, чтобы Архимед на самом деле произносил такие слова: у него было достаточно знаний, чтобы понять, что это невозможно.

2. «Эврика! Эврика!» Радостное восклицание, которое, согласно легенде, издал Архимед, голым выскочив из ванны на улицу. Случилось это якобы после открытия им закона гидростатики. Очень маловероятно, что данная история произошла именно так. Скорее всего, она подверглась литературной обработке Витрувия.

3. Корона царя Гиерона II. Рассказ о короне, без сомнения, имеет под собой историческое основание, хотя для доказательства мошенничества необходимо было применить комбинацию закона Архимеда и закона рычага, а не просто довольствоваться вылившейся через край сосуда водой.

4. Эпитафия на могиле. Весьма вероятно, что Архимед действительно завещал вырезать на своей могиле шар, вписанный в цилиндр. Цицерон нашел эту могилу, уже тогда сильно поврежденную, но, к сожалению, до наших дней она не сохранилась.

5. «Не трогай моих кругов!» Сама фраза, может быть, и выдумана, но контекст, в котором она, по преданию, была произнесена,— нет. Историки согласны в том, что Архимед был убит в своем доме во время работы. Неясно только, действительно ли он сказал эту фразу солдату перед убийством.

6. Архимедов винт. Данное устройство, скорее всего, было известно еще до рождения ученого. Но вполне возможно, что он каким-нибудь образом усовершенствовал его или же расширил область его применения.

7. Руководство обороной Сиракуз. Согласно всем достоверным источникам эти сведения об Архимеде, по-видимому, верны.

8. «Коготь Архимеда». Ученый действительно построил машину, которая поднимала и разрушала корабли противника, как это следует из хроник.

9. Тепловой луч. Почти наверняка является мифом из-за технических ограничений и молчания античных историков.

10. Вычисление π. Часто говорят, что Архимед вычислил число π. Это невозможно! Десятичное представление числа π является бесконечным и не имеет периода. Поэтому знаки данного числа после запятой можно вычислять бесконечно. Но правда в том, что Архимед вычислил приближение для числа π, которое используется до сих пор, — 3,14. 


Катапульта

Катапульта — это военное орудие, использующее потенциальную энергию эластичных элементов для преобразования ее в кинетическую энергию снаряда. Известно, что ко времени Архимеда катапульта была уже известна и что он внес в ее конструкцию значительные улучшения. К примеру, Полибий рассказывает:


«Но Архимед приготовил машины, которые метали камни на любое желаемое расстояние».


Наблюдатель неба

Единственная книга, в которой Архимед выказывает интерес к астрономии, — это «Исчисление песчинок». Тем не менее существуют другие источники, и согласно им он посвятил часть своей жизни наблюдению за небесными телами и даже сконструировал некоторые инструменты для этой цели. Так, Папп Александрийский рассказывает, что Архимед написал трактат «О строении сфер», который, к сожалению, был утерян.


«В этом сицилийском ученом [Архимеде] был заключен гений куда более высокий, чем любой другой человеческий гений».

Марк Туллий Цицерон (106-43 до н. э.)


Со своей стороны Цицерон рассказывает, что во время разграбления Сиракуз солдаты Марцелла нашли два шара, принадлежавших знаменитому ученому. Один из них, с резной поверхностью, представлял собой небесный глобус, изобретение которого Цицерон приписывает Фалесу и Евдоксу. Второй был еще удивительней, и авторство его Цицерон признает за Архимедом: это был планетарий, то есть механическая система, представляющая движение Солнца, Луны, планет и звезд, с Землей в центре. Обе сферы были взяты в качестве военного трофея и помещены Марцеллом в храм Доблести в Риме. Как свидетельствует Цицерон, полководец, политик и астроном Гай Сульпиций Галл тщательно изучил механизм:


«Но как только Галл начал объяснять нам с большим знанием принцип действия этой машины, я решил, что в этом сицилийском ученом был заключен гений куда более высокий, чем любой другой человеческий гений».


В 1990 году были найдены остатки греческого корабля I века до н. э. Там было обнаружено устройство, которое исследователи определили как астрономический вычислитель, то есть очень сложный планетарий. Находка была названа Антикитерским механизмом, потому что нашли ее рядом с одноименным греческим островом. Речь идет об очень искусном планетарном механизме, у которого должен был быть образец для изготовления. Возможно, таким образцом послужил механизм Архимеда.


Память об Архимеде

Архимед не просто оставил свой след в истории инженерного дела. Многие устройства нашего времени часто носят его имя, что служит данью уважения великому ученому. Часто мы видим и слово «Эврика» в названии исследовательских центров, ассоциаций и тому подобных организаций. Имя Архимеда три раза встречается на карте Луны. Кратер Архимед диаметром 80 км и глубиной 2,1 км имеет селенографические координаты 29.72° с. ш и 3.99° з. д. и находится в восточной части Моря Дождей. К югу от кратера вздымаются горы Архимед, а к юго-востоку от них простирается равнина Болото Гниения, где находится система трещин, называемых расщелины Архимед. Советский зонд Луна-2 — первый рукотворный объект, достигший Луны, — врезался в ее поверхность в Болоте Гниения 14 сентября 1959 года. А первыми людьми, приблизившимися к кратеру Архимед, стали Дэвид Скотт и Джеймс Ирвин — командир и пилот лунного модуля «Фалкон» корабля «Аполлон-15». Местом их прилунения стало подножие Апеннинских гор, примерно в 200 км к югу от центра кратера.

Приложение

0 ШАРЕ И ЦИЛИНДРЕ[1 Здесь и далее перевод И. Н. Веселовского]

Книга I

Утверждение 2

Тогда выпуклой в одну и ту же сторону я называю такую линию, для которой прямые, соединяющие две произвольные ее точки, будут или все находиться по одну сторону этой линии, или же некоторые по одну ее сторону, другие же на самой линии, но никакая такая прямая не будет находиться по другую ее сторону.

Утверждение 33

Поверхность всякого шара равна его учетверенному большому кругу.

Утверждение 34

Всякий шар в четыре раза больше конуса, имеющего основание, равное большому кругу шара, а высоту, равную радиусу шара.

Следствие [из утверждения 34]

Из доказанного ясно, что всякий цилиндр, имеющий основанием большой круг шара, а высоту, равную его диаметру, будет в полтора раза больше шара и что поверхность его вместе с основаниями будет в полтора раза больше поверхности шара.

Утверждение 42

Поверхность всякого сферического сегмента, который меньше, чем полушарие, равна кругу, радиус которого равен прямой, проведенной из вершины сегмента до окружности круга, являющегося основанием сегмента.

Утверждение 44

Всякий сферический сектор равен конусу, имеющему основание, равное поверхности сферического сегмента, соответствующего этому сектору, а высоту, равную радиусу шара.

Книга II

Архимед приветствует Досифея.

Ты уже просил меня написать доказательства для тех проблем, формулировки которых я посылал к Конону; при изложении большей части их приходится пользоваться теоремами, доказательства которых я уже послал тебе, а именно: [...]

Комментариев (0)
×