Вильямс Никитин - В помощь радиолюбителю. Выпуск 9

На нашем литературном портале можно бесплатно читать книгу Вильямс Никитин - В помощь радиолюбителю. Выпуск 9, Вильямс Никитин . Жанр: Радиотехника. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Вильямс Никитин - В помощь радиолюбителю. Выпуск 9
Название: В помощь радиолюбителю. Выпуск 9
Издательство: неизвестно
ISBN: -
Год: -
Дата добавления: 13 февраль 2019
Количество просмотров: 209
Читать онлайн

Помощь проекту

В помощь радиолюбителю. Выпуск 9 читать книгу онлайн

В помощь радиолюбителю. Выпуск 9 - читать бесплатно онлайн , автор Вильямс Никитин
1 ... 4 5 6 7 8 9 ВПЕРЕД

Различные транзисторы, микросхемы и другие приборы рассчитаны на питание разными напряжениями, поэтому наличие в электросети именно переменного напряжения оказывается очень удобным, так как при помощи трансформатора на его вторичных обмотках из стандартного напряжения сети 220 В легко можно получить любые другие значения напряжений. Получить же различные напряжения при наличии сети постоянного тока оказалось бы значительно сложнее.

Простейшим выпрямительным устройством является однополупериодный выпрямитель, схема которого приведенная на рис. 35.



Рис. 35. Схема однополупериодного выпрямителя и форма напряжений


Ее отличительной особенностью является то, что диод пропускает ток только в течение одной половины периода переменного напряжения, когда оно положительно на верхнем по схеме выводе вторичной обмотки трансформатора. Поэтому схема и называется однополупериодной.

Если бы параллельно нагрузке R не был подключен конденсатор С, форма напряжения на нагрузке была бы такой, как показано штриховой линией, и напряжение вместо постоянного на нагрузке было бы пульсирующим. Конденсатор сглаживает пульсации выпрямленного напряжения. После включения при первом же положительном полупериоде конденсатор быстро заряжается. Ток заряда течет по вторичной обмотке трансформатора через открытый диод, конденсатор и обратно к вторичной обмотке. Сопротивление этой цепи мало и определяется сопротивлением обмотки и открытого диода. Поэтому заряд конденсатора происходит быстро.

В точке А напряжение заряженного конденсатора почти равно напряжению на обмотке, а в дальнейшем оказывается больше его, из-за чего диод запирается и заряд конденсатора прекращается. Теперь начинается разряд конденсатора на нагрузку R. Сопротивление нагрузки значительно больше, чем сопротивление цепи заряда. Поэтому разряд конденсатора происходит медленно, до точки Б, когда напряжение на обмотке трансформатора вновь становится больше напряжения на конденсаторе, и вновь начинается его заряд. Результирующее напряжение на конденсаторе и нагрузке показано сплошной линией. Оно содержит постоянную составляющую (собственно выпрямленное напряжение) и переменную составляющую, которая называется напряжением пульсаций. Очевидно, что чем меньше сопротивление нагрузки (или чем больше потребляемый нагрузкой от выпрямителя ток), тем больше амплитуда пульсаций и меньше выпрямленное напряжение, так как в таком режиме точка Б будет располагаться ниже. Чем больше емкость конденсатора, тем медленнее он станет разряжаться и тем меньше будет амплитуда пульсаций и больше выпрямленное напряжение. Поэтому в схемах выпрямителей используют электролитические конденсаторы большой емкости.

Наибольшее выпрямленное напряжение определяется амплитудой переменного напряжения на вторичной обмотке трансформатора. По этой причине рабочее напряжение конденсатора должно быть не менее этого значения напряжения.

Выбор диода в этой схеме связан со следующими требованиями. Средний выпрямленный ток диода равен току нагрузки. Прямой импульсный ток диода равен отношению амплитуды напряжения на вторичной обмотке трансформатора к сопротивлению этой обмотки. Наконец, во время отрицательного полупериода к диоду прикладывается обратное напряжение, равное удвоенной амплитуде напряжения на вторичной обмотке.

Недостаток однополупериодной схемы выпрямления очевиден: из-за большого промежутка времени между моментами А и Б, который несколько превышает половину периода, конденсатор успевает заметно разрядиться, что приводит к повышенной амплитуде пульсаций выпрямленного напряжения. Дальнейшее сглаживание этих пульсаций затруднено тем, что частота пульсаций равна частоте сети питающего напряжения 50 Гц. В связи с этим выпрямители, собранные по однополупериодной схеме, используются лишь при больших сопротивлениях нагрузки, то есть при малом токе потребления, когда постоянная времени разряда конденсатора велика и он не успевает заметно разряжаться за время отрицательных полупериодов напряжения.

Указанные недостатки выражены слабее в двухполупериодной схеме выпрямления, которая показана на рис. 36.



Рис. 36. Схема двухполупериодного выпрямителя и форм напряжений


Здесь используются два диода и вдвое увеличена вторичная обмотка трансформатора, оснащенная средней точкой. В течение одного полупериода конденсатор заряжается через один диод, а второй в это время заперт, в течение второго полупериода второй диод отпирается, а первый заперт. Форма напряжения на нагрузке при отсутствии конденсатора показана штриховой линией, а при наличии конденсатора — сплошной. Время, в течение которого конденсатор разряжается, уменьшено в этой схеме более чем вдвое. По этой причине выпрямленное напряжение получается больше, а амплитуда пульсаций значительно меньше, чем при использовании однополупериодного выпрямителя. Существенно также и то, что частота пульсаций вдвое превышает частоту питающей сети и составляет 100 Гц, что значительно облегчает последующее их сглаживание.

Несмотря на указанные преимущества, двухполупериодная схема выпрямления со средней точкой обладает и недостатками, к которым относятся усложнение трансформатора, а также невозможность создания двух совершенно одинаковых половин вторичной обмотки. Это приводит к тому, что амплитуды напряжений на половинах вторичной обмотки оказываются разными. В связи с тем, что конденсатор заряжается попеременно от каждой из половин вторичной обмотки, в составе пульсаций выпрямленного напряжения появляется составляющая с частотой 50 Гц, хотя она и меньше, чем при однополупериодном выпрямлении. Двухполупериодная схема выпрямителей широко использовалась в эпоху ламповой техники, когда применялись двуханодные кенотроны с общим катодом. Их оказывалось удобно применять в такой схеме, где катоды диодов соединены и для обоих диодов можно использовать одну обмотку накала. У полупроводниковых диодов отсутствует подогреватель и с их внедрением двухполупериодная схема со средней точкой вторичной обмотки трансформатора, потеряв указанное преимущество, оказалась полностью вытесненной мостовой схемой выпрямления, которая в устаревшей литературе называется схемой Греца.

Мостовая схема выпрямителя показана на рис. 37.



Рис. 37. Мостовая схема выпрямления


Вместо двух диодов она содержит четыре, но зато не нуждается в удвоении вторичной обмотки трансформатора. В течение одной половины периода переменного тока ток проходит от верхнего по схеме вывода вторичной обмотки через диод VD2, нагрузку, через диод VD3 к нижнему выводу вторичной обмотки. В течение следующей половины периода ток проходит от нижнего вывода обмотки через диод VD4, нагрузку, через диод VD1 к верхнему выводу вторичной обмотки трансформатора. Таким образом, в течение обоих полупериодов в нагрузке протекает ток одного и того же направления и диодами выпрямляется одно и то же переменное напряжение вторичной обмотки. Благодаря этому в составе пульсации составляющая с частотой 50 Гц отсутствует.

Мостовая схема выпрямления также является двухполупериодной. Форма напряжения на нагрузке в этой схеме оказывается такой же, как и в двухполупериодной схеме со средней точкой. Рабочее напряжение конденсатора также равняется амплитуде переменного напряжения на вторичной обмотке. Однако требования к диодам в обеих двухполупериодных схемах отличаются от требований в однополупериодной схеме.

В связи с тем, что ток нагрузки проходит через диоды поочередно, средний выпрямленный ток каждого диода равен половине тока нагрузки.

Обратные напряжения на диодах мостовой схемы равны не удвоенной, а одинарной амплитуде напряжения вторичной обмотки. Обратные напряжения на диодах двухполупериодной схемы со средней точкой и значения импульсных токов обеих схем такие же, как и в однополупериодной схеме. Однако ток вторичной обмотки трансформатора в мостовой схеме равен по своему эффективному значению току нагрузки, что вдвое больше, чем в однополупериодной схеме и в схеме со средней точкой. Поэтому сечение провода вторичной обмотки трансформатора в мостовой схеме должно быть в два раза больше, чем в двух других (диаметр провода — в 1,41 раз больше).

Удвоение количества диодов в мостовой схеме с лихвой окупается вдвое уменьшенным количеством витков вторичной обмотки трансформатора и уменьшением пульсаций выпрямленного напряжения. Для упрощения монтажа мостовых схем промышленностью выпускаются готовые сборки из четырех одинаковых диодов в одном корпусе, которые уже соединены между собой по схеме моста. К таким сборкам, например, относятся сборки типа КД906 со средним выпрямленным током до 400 мА и обратным напряжением до 75 В.

1 ... 4 5 6 7 8 9 ВПЕРЕД
Комментариев (0)
×