Илья Рухленко - Что ответить дарвинисту? Часть II

На нашем литературном портале можно бесплатно читать книгу Илья Рухленко - Что ответить дарвинисту? Часть II, Илья Рухленко . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Илья Рухленко - Что ответить дарвинисту? Часть II
Название: Что ответить дарвинисту? Часть II
Издательство: неизвестно
ISBN: нет данных
Год: неизвестен
Дата добавления: 28 январь 2019
Количество просмотров: 446
Читать онлайн

Помощь проекту

Что ответить дарвинисту? Часть II читать книгу онлайн

Что ответить дарвинисту? Часть II - читать бесплатно онлайн , автор Илья Рухленко
1 ... 12 13 14 15 16 ... 119 ВПЕРЕД

Что еще можно добавить к этому примеру «эволюции жаб»?

Пожалуй, только то, что спустя несколько лет после публикации первой статьи, австралийские биологи, наконец, и сами догадались, что найденный ими «пример эволюции» – не слишком похож на ту эволюцию, которая обычно имеется в виду, когда о ней говорят дарвинисты. Исследователи опубликовали сразу две работы на эту тему (Shine et al., 2011(а); Shine et al., 2011(б)), где они приходят к следующему выводу:

…В отличие от обычной эволюции, которую ведет естественный отбор, мы думаем, что ускоренное вторжение жабы следует из «пространственной сортировки». Гены, нужные для того, чтобы перемещаться быстрее и дальше, концентрируются на всё более стремительном фронте вторжения.[27]

То есть, авторы буквально повторяют то, о чем я выше уже рассказал на примере «американских переселенцев». Это не эволюция (в том смысле, в котором этот термин общепринято употребляется), а просто пространственная дифференцировка соответствующих генов. Где гены, способствующие быстрому расселению, в итоге оказались в соответствующем месте – на переднем крае этого расселения. Причем эти гены, скорее всего, уже имелись в генофонде этого вида. Просто в результате экспансии они постепенно сконцентрировались именно там, где и должны были сконцентрироваться.[28]

В заключение осталось только посмотреть, чем же подобные «эволюции» заканчиваются. А вот чем.

В очередной статье на эту тему (Lindstrom et al., 2013) австралийские биологи исследовали этот вопрос, и выяснили, что дальность перемещения жаб на тех участках, где «волна расселения» уже прошла (всего несколько лет назад) опять снижается. Отсюда следует, что «эволюции быстроногости» у жаб-аг, скорее всего, не происходит. После прохождения волны экспансии «всё возвращается на круги своя».

И наконец, последнее. Всё-таки не исключено, что механизмы изменения подвижности жаб именно в самой «волне расселения», на самом деле, более сложные, чем просто «пространственная сортировка генотипов». Может быть, здесь задействованы специальные генетические механизмы, которые у этих жаб обычно «спят», а включаются только в новых условиях (например, при расселении). Эти включившиеся гены и переводят генотипы некоторой части особей в особый «режим расселения». В результате чего жабы и начинают демонстрировать то странное поведение, которое заставляет их упорно двигаться в одном направлении, в результате чего дальность такого «марш-броска» может составить до одного километра за ночь. А после расселения, соответствующие генетические комплексы опять засыпают, и жабы возвращаются к добропорядочному образу жизни.

Такой сценарий звучит несколько фантастично… пока не узнаешь о еще более фантастических вещах, демонстрируемых некоторыми другими животными в ходе аналогичных расселений на новом месте. Чуть ниже я расскажу о настолько невероятных «выходках», которые продемонстрировал конкретный вид жука (зигограмма), попав в новые местообитания, что по сравнению с ним «жабы-марафонцы» начинают выглядеть совсем бледно. Читайте об этом ниже.

Впрочем, может быть, в описанном механизме и нет ничего фантастического. Известно, что у многих животных при достижении некоего критического порога плотности популяции, включается миграционное поведение. Наверное, самые известные примеры подобных вспышек стремления попутешествовать – это саранча и лемминги. Можно предположить, что и у этого вида жаб тоже имеется что-то подобное – стремление путешествовать «включается» у определенных особей при достижении популяциями некоего порога плотности. Может быть поэтому в первые годы появления жабы-аги в Австралии, когда плотность их популяций была меньше, чем сейчас, скорость их расселения тоже была меньше, чем сейчас?[29]

3.2. Ящерицы и недоразумения

Исследования с «эволюционировавшими ящерицами» гораздо более разрекламированы, чем пример с «эволюционировавшими жабами». Причем в отличие от одинокого примера жаб из Австралии – по ящерицам таких исследований опубликован целый ряд, и выполнены они разными авторами на разных ящерицах. Поэтому нам сейчас придётся «разгрести» все эти примеры «эволюции».

Во-первых, в некоторых ссылках на тему «эволюционировавших ящериц» могут быть опубликованы просто недоразумения. Приведу один, недавно установленный пример, в котором якобы произошла сверхбыстрая «эволюция» ящериц, заселённых сразу на несколько островков Карибского моря (Kolbe et al., 2012). В этом исследовании биологи поселили на семь (7) маленьких островков Багамского архипелага по паре ящериц с соседнего большого острова и четыре года (4 года) наблюдали за «эволюцией» их потомства.

Результаты исследований:

На всех (!) семи островках у ящериц синхронно укоротилась средняя длина ног примерно на 5 % (у самцов на 6.5 %, у самок на 4 %) в течение всего 3 (!) поколений.

Вдохновленный столь сногсшибательными результатами, автор соответствующей научно-популярной заметки (Марков, 2012а) принялся рассуждать о какой-то там эволюции (за три поколения!) под действием естественного отбора, в ходе приспособления к более тонким веткам растений, растущим на этих островках, в сравнении с более толстыми ветками, растущими на исходном острове.

На самом деле, понятно, что такие результаты вообще не лезут ни в какие ворота представлений о дарвиновской эволюции. Во-первых, в рамках дарвинизма, изменения организмов случайны, следовательно, синхронность изменений (произошедших на всех семи островках за три поколения) автоматически опровергает механизм «случайные мутации + естественный отбор». Особенно если помнить, что каждый островок заселялся всего одним самцом и самкой. Таким образом, здесь для естественного отбора был вообще наименьший исходный материал, который только возможен.

Во-вторых, 3 поколения – слишком мало для того, чтобы новый признак завоевал популяцию. Даже если этот признак чудовищно полезен, например, повышает приспособленность аж на 400 %, то даже в этом случае вряд ли стоит ожидать замены всех ящериц на более коротконогих всего за 3 поколения.

Тем более что на самом деле, естественный отбор в обсуждаемом случае совсем не был «чудовищным». Скорее уж, наоборот:

1) Ящерицы расселялись по островкам, на которых вообще отсутствовали их природные хищники.

2) Ящерицы данного вида не являются строго древесными – они могут сидеть не только на ветвях, но и на стволах растений (которые, конечно, толще, чем ветки), включая самое основание этих стволов, и даже вообще на земле (Рис. 9). То есть, эти ящерицы в обычных условиях (взятые оттуда, откуда их привезли) спокойно выживают со своими ногами: 1) на земле, 2) на нижней части стволов, 3) на тонких и толстых стволах и ветках (растительность исходных островов включает растения разной толщины).

3) Наконец, вряд ли укорочение длины конечностей на 5 % так критически влияло на выживание ящериц даже на тонких ветвях. Трудно представить себе эту ящерицу, так хорошо приспособленную к древесному образу жизни… хронически падающей с веток из-за того, что её конечности чуть длиннее, чем у других.


https://goo.gl/7pfOHW


Рисунок 9. Ящерица коричневый анолис (Аnolis sagrei), объект исследования в обсуждаемой работе (Kolbe et al., 2012) в своей естественной среде обитания: на тонких ветвях, на стволе дерева, и на земле.


Более того, соответствующие исследования (Jones & Jayne, 2012), наоборот, установили, что виды ящериц именно из рода Anolis с более длинными задними ногами передвигаются быстрее по любой поверхности (независимо от её толщины), чем их менее длинноногие собратья из этого же рода (в этой работе изучалась скорость передвижения ящериц по веткам диаметром: 5 мм, 10 мм, 30 мм, 60 мм, 100 мм).

Наконец, в других исследованиях, с другим видом ящериц (Husak, 2006) было установлено, что ящерицы во время охоты обычно развивают лишь половину той скорости, которую они развивают, стремясь избежать хищника. Таким образом, скорость передвижения по веткам, наверное, была не слишком актуальна для ящериц, оказавшихся на острове, где хищники отсутствовали вовсе.


В общем, совершенно ясно, что механизмы изменений здесь были не дарвиновскими. Даже если бы и имелась какая-то микро-причина для укорочения ног ящериц (хотя непонятно, какая), то естественный отбор за 2–3 поколения невозможен. Для того чтобы за 2–3 поколения на всех 7 островках получилось то, о чём рапортовали в статье исследователи – вместо естественного отбора на этих островках должен был сидеть разумный селекционер, который бы сортировал этих ящериц.

1 ... 12 13 14 15 16 ... 119 ВПЕРЕД
Комментариев (0)
×