Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

На нашем литературном портале можно бесплатно читать книгу Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики, Леонард Сасскинд . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Название: Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Издательство: -
ISBN: -
Год: -
Дата добавления: 28 январь 2019
Количество просмотров: 312
Читать онлайн

Помощь проекту

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики читать книгу онлайн

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - читать бесплатно онлайн , автор Леонард Сасскинд
1 ... 3 4 5 6 7 ... 86 ВПЕРЕД

Давайте временно станем называть звездой любое массивное небесное тело, будь то планета, астероид или настоящая звезда. Земля — это просто маленькая звезда, Луна — еще меньшая звезда и т. д.

По ньютоновскому закону тяготения, гравитационное воздействие звезды пропорционально ее массе, так что совершенно естественно, что и скорость убегания тоже зависит от массы звезды. Но масса — это только полдела. Другая половина — это радиус звезды. Представьте себе, что вы стоите на земной поверхности и в это время некая сила начинает сжимать Землю, уменьшая ее размеры, но без потери массы. Если вы остаетесь на поверхности, то сжатие будет приближать вас ко всем без исключения атомам Земли. При сближении с массой воздействие ее гравитации усиливается. Ваш вес — функция гравитации — будет возрастать, и, как нетрудно догадаться, преодолевать земное тяготение будет все трущее. Этот пример иллюстрирует фундаментальную физическую закономерность: сжатие звезды (без потери массы) увеличивает скорость убегания.

Теперь представьте себе прямо противоположную ситуацию. По каким-то причинам Земля расширяется, так что вы удаляетесь от массы. Тяготение на поверхности будет становиться слабее, а значит, из него легче вырваться. Вопрос, поставленный Митчелом и Лапласом, состоял в том, может ли звезда иметь такую большую массу и столь малый размер, чтобы скорость убегания превзошла скорость света.

Когда Митчел и Лаплас впервые высказали эти пророческие мысли, скорость света (обозначаемая буквой с) была известна уже более ста лет. Датский астроном Оле Рёмер в 1676 году определил, что она составляет колоссальную величину — 300 000 км (это примерно семь оборотов вокруг Земли) за одну секунду:

с = 300 000 км/с

При такой колоссальной скорости, чтобы удержать свет, требуется чрезвычайно большая или чрезвычайно сконцентрированная масса, однако нет видимых причин, по которым такой не могло бы существовать. В докладе Митчела Королевскому обществу впервые упоминаются объекты, которые Джон Уилер впоследствии назовет черными дырами.

Вас может удивить, что среди всех сил гравитация считается чрезвычайно слабой. Хотя тучный лифтер и прыгун в высоту могут чувствовать себя по-разному, есть простой эксперимент, демонстрирующий, как слаба в действительности гравитация. Начнем с небольшого веса: пусть это будет маленький шарик пенопласта. Тем или иным способом придадим ему статический электрический заряд. (Можно просто потереть его о свитер.) Теперь подвесим его к потолку на нитке. Когда он перестанет крутиться, нить будет висеть вертикально. Теперь поднесите к висящему шарику другой подобный заряженный предмет. Электростатическая сила будет отталкивать подвешенный груз, заставляя нить наклоняться.



Того же эффекта можно добиться с помощью магнита, если висящий груз сделан из железа.



Теперь уберите электрический заряд или магнит и попытайтесь отклонить подвешенный груз, поднося к нему очень тяжелые предметы. Их гравитация будет притягивать груз, но воздействие окажется столь слабым, что его невозможно заметить. Гравитация чрезвычайно слаба по сравнению с электрическими и магнитными силами.



Но если гравитация так слаба, почему нельзя допрыгнуть до Луны? Дело в том, что огромная масса Земли, 6x1024 кг, с легкостью компенсирует слабость гравитации. Но даже при такой массе скорость убегания с поверхности Земли составляет меньше одной десятитысячной от скорости света. Чтобы скорость убегания стала больше с, придуманная Митчелом и Лапласом темная звезда должна быть потрясающе массивной и потрясающе плотной.

Чтобы прочувствовать масштаб величин, давайте рассмотрим скорости убегания для разных небесных тел. Для покидания поверхности Земли нужна начальная скорость около 11 км/ с, что, как уже отмечалось, составляет примерно 40 000 км/ч. По земным меркам это очень быстро, но в сравнении со скоростью света подобно движению улитки.

На астероиде у вас было бы куда больше шансов покинуть поверхность, чем на Земле. У астероида радиусом 1,5 км скорость убегания составляет около 2 м/с: достаточно просто прыгнуть. С другой стороны, Солнце много больше Земли, как по размеру, так и по массе[20]. Эти два фактора действуют в противоположных направлениях. Большая масса затрудняет покидание поверхности Солнца, а большой радиус, наоборот, упрощает. Масса, однако, побеждает, и скорость убегания для солнечной поверхности примерно в пятьдесят раз больше, чем для земной. Но она все равно остается много ниже скорости света.

Но Солнце не будет вечно сохранять свой нынешний размер. В конце концов звезда исчерпает запасы топлива, и распирающее ее давление, поддерживаемое внутренним теплом, ослабнет. Подобно гигантским тискам, гравитация начнет сжимать звезду до малой доли ее первоначального размера. Где-то через пять миллиардов лет Солнце выгорит и сколлапсирует в так называемый белый карлик с радиусом примерно как у Земли. Чтобы покинуть его поверхность, потребуется скорость 6400 км/с — это очень много, но все равно лишь 2 % от скорости света.

Если бы Солнце было немного — раза в полтора — тяжелее, добавочная масса стиснула бы его сильнее, чем до состояния белого карлика. Электроны в звезде вдавились бы в протоны, образуя невероятно плотный шар из нейтронов. Нейтронная звезда столь плотна, что одна лишь чайная ложка ее вещества весит несколько миллиардов тонн. Но и нейтронная звезда еще не искомая темная; скорость убегания с ее поверхности уже близка к скорости света (около 80 % с), но все же не равна ей.

Если коллапсирующая звезда еще тяжелее, скажем, в пять раз массивнее Солнца, тогда даже плотный нейтронный шар не сможет противостоять сжимающему гравитационному притяжению. В результате финального направленного внутрь взрыва звезда сожмется в сингулярность — точку почти бесконечной плотности и разрушительной силы. Скорость убегания для этого крошечного ядра многократно превосходит скорость света. Так возникает темная звезда, или, как мы сегодня говорим, черная дыра.

Эйнштейну так не нравилось само представление о черных дырах, что он отрицал возможность их существования, утверждая, что они никогда не смогут образоваться. Но нравится это Эйнштейну или нет, черные дыры — это реальность. Сегодня астрономы запросто изучают их, причем не только одиночные сколлапсировавшие звезды, но и находящиеся в центрах галактик черные гиганты, образованные слиянием миллионов и даже миллиардов звезд.


Компьютерная модель черной дыры в 10 солнечных масс


Солнце недостаточно массивно, чтобы самостоятельно сжаться в черную дыру, но, если помочь ему, сдавив его в космических тисках до радиуса в 3 км, оно стало бы черной дырой. Можно подумать, что, если потом ослабить тиски, оно снова раздуется, скажем, до 100 км, но в действительности будет уже поздно: вещество Солнца перейдет в состояние своего рода свободного падения. Поверхность быстро преодолеет радиус в одну милю, один метр, один сантиметр. Никакие остановки невозможны, пока не образуется сингулярность, и этот коллапс необратим.

Представьте, что мы находимся вблизи черной дыры, но в точке, отличной от сингулярности. Сможет ли свет, выйдя из этой точки, покинуть черную дыру? Ответ зависит как от массы черной дыры, так и от конкретного места, из которого свет начинает свое движение. Воображаемая сфера, называемая горизонтом[21], делит Вселенную на две части. Свет, который идет изнутри горизонта, неминуемо будет затянут в черную дыру, однако свет, идущий извне горизонта, может черную дыру покинуть. Если бы Солнце стало однажды черной дырой, радиус его горизонта составил бы около 3 км.

Радиус горизонта называют шварцшильдовским радиусом в часть астронома Карла Шварцшильда, который первым стал изучать математику черных дыр. Шварцшильдовский радиус зависит от массы черной дыры; на самом деле он ей прямо пропорционален. Например, если массу Солнца заменить тысячей солнечных масс, у светового луча, испущенного с расстояния в 3 или 5 км, не будет шансов уйти прочь, поскольку радиус горизонта вырастет тысячекратно, до трех тысяч километров.



Пропорциональность между массой и радиусом Шварцшильда — первое, что физики узнали о черных дырах. Земля примерно в миллион раз менее массивна, чем Солнце, поэтому ее шварцшильдовский радиус в миллион раз меньше солнечного. Для превращения в темную звезду ее пришлось бы сжать до размеров клюквины. Для сравнения: в центре нашей Галактики притаилась гигантская черная дыра со шварцшильдовским радиусом около 150 000000 км — примерно как у земной орбиты вокруг Солнца. А в других уголках Вселенной встречаются и еще более крупные монстры.

1 ... 3 4 5 6 7 ... 86 ВПЕРЕД
Комментариев (0)
×