Герман Назаров - Космические твердотопливные двигатели

На нашем литературном портале можно бесплатно читать книгу Герман Назаров - Космические твердотопливные двигатели, Герман Назаров . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Герман Назаров - Космические твердотопливные двигатели
Название: Космические твердотопливные двигатели
Издательство: -
ISBN: нет данных
Год: -
Дата добавления: 31 январь 2019
Количество просмотров: 150
Читать онлайн

Помощь проекту

Космические твердотопливные двигатели читать книгу онлайн

Космические твердотопливные двигатели - читать бесплатно онлайн , автор Герман Назаров
1 ... 7 8 9 10 11 ... 14 ВПЕРЕД

Спустя ~ 10 с после прекращения работы последних РДТТ на высоте порядка 20 км все девять твердотопливных — двигателей одновременно отделяются. Жидкостная ступень продолжает функционировать примерно до 230-й секунды полета. При этом РН поднимается на 95 км, разгоняясь до 5300 м/с. Двигаясь несколько секунд по инерции, «Дельта» поднимается еще на 10 км, после чего производится двукратное включение ЖРД второй ступени с интервалом 13 мин. Проработав в общей сложности 300 с на уровне тяги 46 кН, указанный ЖРД выводит полезный груз на высоту около 180 км, сообщая ему первую космическую скорость.

Вслед за этим производится раскрутка (с целью стабилизации) и отделение третьей, твердотопливной ступени (вместе с ИСЗ). Ее двигатель тягой 67 кН включается на 24-й минуте полета и за 44 с работы увеличивает скорость ИСЗ с 7,9 до 10,25 км/с. При этом спутник выводится в точку над экватором, соответствующую перигею орбиты 185 × 35 790 км, с наклонением к плоскости экватора около 29° (апогей соответствует противоположной точке земного шара). Здесь ИСЗ отделяется и самостоятельно, при помощи собственного ракетного двигателя, совершает переход на геостационарную орбиту. Эту завершающую фазу полета мы рассмотрим в соответствующем разделе (см. стр. 49), а пока вернемся к. «Дельте».


Рис. 10. Ракета носитель «Дельта»


Из приведенной выше схемы запуска нетрудно заметить, что на навесные РДТТ «Дельты» (а тем более на каждый из них в отдельности) приходится относительно небольшая доля от суммарного импульса тяги, развиваемого всеми двигателями РН. Функционируют они непродолжительное время и отделяются на малой высоте. Так что если в МТКК «Спейс Шаттл» и РН «Титан» соответствующие РДТТ образуют полноценные ступени, то в. «Дельте» они по своим характеристикам являются промежуточными между ракетными ступенями и ракетными ускорителями. В конструктивном отношении эти двигатели относятся к самым простым среди маршевых РДТТ. В частности, они не. содержат устройств для изменения вектора тяги, и управление полетом РН «Дельта» производится при помощи жидкостной двигательной установки центрального блока.

С 1968 г. на третьей ступени РН «Дельта» устанавливаются РДТТ серии «Стар-37», созданные на базе тормозного двигателя КА «Сервейер». Они содержат корпуса диаметром 935 мм, изготовленные из титанового сплава, и «утопленные» сопла. Первоначально использовался вариант РДТТ со сферическим корпусом, имевший следующие характеристики: масса 718 кг, включая 653 кг (т. е. 91 %) смесевого топлива полибутадиен — перхлорат аммония — алюминий, максимальная тяга 46,7 кН, удельный импульс 2850 м/с. Работая в течение 44 с, двигатель развивал полный импульс тяги 1860 кН с, соответствующий усредненной тяге 42 кН.

В 1972 г. корпус (и соответственно топливный заряд) РДТТ был удлинен на 362 мм путем введения средней цилиндрической секции, в связи с чем масса РДТТ увеличилась примерно на 400 кг, а содержание топлива возросло до 92,6 %. Полный импульс тяги достиг 2910 кН с; пропорционально этому увеличилась тяга (до 66,7 кН), поскольку продолжительность работы двигателя осталась прежней.

В этой связи интересно сравнить РДТТ с ЖРД. Если для двигательной установки с ЖРД увеличение (сокращение) запаса топлива приводит к соответствующему увеличению (сокращению) продолжительности работы двигателя, а тяга его остается неизменной, то для РДТТ наблюдается противоположный эффект. Таким образом, тягу РДТТ можно менять в значительных пределах путем простого изменения длины. топливного заряда. В этом отношении «гибкими» являются секционные РДТТ (подобные рассмотренным ранее SRM и UA-1205): варьируя число секций, можно легко получать двигатели разной тяги.

Завершая обсуждение вопросов, связанных с двигателями РН «Дельта», отметим, что в 1977–1978 гг. были созданы новые варианты РДТТ серии «Стар-37», в которых реализованы многие из последних достижений в области твердотопливных двигателей. Теперь же мы переходим к рассмотрению космических РДТТ, созданных во Франции.

РДТТ ракеты-носителя «Диамант». Твердотопливные двигатели устанавливались на второй и третьей ступенях этой РН, при помощи которой было запущено Несколько французских ИСЗ в 1965–1975 гг. (на первой ступени ракеты использовался ЖРД). «Диамант» является единственной РН, созданной во Франции. Подобно американским, эта РН подверглась ряду усовершенствований, направленных на повышение мощности.

В последнем варианте «Диамант» применялись односопловые РДТТ с короткими стеклопластиковыми корпусами диаметром 1,5 (вторая ступень) и 0,8 м (третья ступень), в которых содержалось соответственно 4 и 0,685 т смесевого топлива. В первом из этих РДТТ предусмотрено управление вектором тяги за счет впрыска в сопло фреона, что позволяет контролировать полет ракеты в плоскостях тангажа и курса. Этот двигатель работает 62 с на постоянном уровне тяги 180 кН. Соответствующие параметры для РДТТ третьей ступени «Диамант» составляют 46 с и ~ 30 кН (усредненная величина). Подобно РДТТ второй ступени, этот двигатель содержит неподвижное сопло с графитовой горловиной, однако в нем нет устройств для управления вектором тяги.

Из рис. 1, на котором был представлен данный РДТТ, видно, что в его топливном заряде имеется центральный круглый канал с поперечными щелями. Такая конфигурация заряда обеспечивает неизменную поверхность горения и соответственно постоянную тягу двигателя в процессе работы. Точные размеры внутренней полости заряда обеспечиваются механической обработкой.

На топливо приходится 91 % от полной массы двигателя, и оно имеет следующий состав: 60 % перхлората калия, 21 % полиуретана, 19 % алюминия (приведены скругленные значения). Применение этого сравнительно малоэффективного топлива позволило получить удельный импульс РДТТ лишь около 2730 м/с. Для РДТТ второй ступени РН «Диамант» (где также использовалось полиуретановое топливо) этот параметр еще меньше — примерно 2680 м/с.

Следует отметить, что двигатели ракеты «Диамант» не отражают в полной мере успехи Франции в области РДТТ. Так, например, в баллистических ракетах дальнего действия, созданных в этой стране, используются РДТТ с топливными зарядами, масса которых достигает 16 т и время горения 76 с. В 1969 г. одна французская фирма демонстрировала на выставке экспериментальный заряд диаметром 3 м.

Многие современные достижения в области РДТТ реализованы да твердотопливном двигателе, совместно созданном недавно специалистами Франции, Италии и ФРГ для использования в космических аппаратах, начиная с 1980 г. Этот РДТТ с суммарной массой 692 кг развивает полный импульс тяги 1900 кН с и удельный импульс свыше 2890 м/с. Однако прежде чем перейти к двигателям КА, рассмотрим двигатели еще нескольких РН.

РДТТ «Вэксуинг». Этот двигатель, представленный на рис. 11, использовался на третьей ступени английской РН «Блэк Эрроу», при помощи которой в 1971 г. был запущен первый английский ИСЗ «Просперо». Хотя «Вэксуинг» и подобные ему двигатели и не имеют широкого применения, рассмотрение этого РДТТ позволит получить более полное представление о возможных конструкциях космических РДТТ, их особенностях и проблемах, решаемых при их создании.

В РДТТ «Вэксуинг» применяется корпус в виде тонкостенного (0,6–0,8 мм) стального сосуда диаметром 712 мм. В двигателе содержится 312 кг не совсем обычного смесевого топлива. Оно состоит из перхлората аммония (63 %), пикрата аммония (14 %), алюминия (12 %) и горючего-связки на основе пластифицированного полиизобутилена (11 %). Это топливо необычно в том отношении, что изготовление заряда из него сводится к смешиванию указанных компонентов до состояния густой пасты (с плотностью 1,77 г/см3), последующее отверждение которой не производится. При температуре 60 °C топливная масса становится настолько пластичной, что ею можно заполнять под вакуумом корпус РДТТ.

После загрузки в топливо вводится профилированная игла для образования внутреннего канала горения. Созданием соответствующего гидростатического давления обеспечивается плотное прижатие заряда к корпусу, который предварительно покрывается теплоизоляционным слоем (наполненный хлорсульфоновый полиэтилен) и адгезионным составом (нитрильный каучук).

Двигательная установка с РДТТ «Вэксуинг» имеет массу 352 кг (на долю топлива приходится 89 % от этой величины) и работает 37 с, развивая удельный импульс около 2710 м/с. В течение первых 15 с тяга РДТТ постепенно возрастает, достигая ~ 29 кН (при этом давление в камере увеличивается до ~ 2,8 МПа), после чего плавно снижается. Создатели «Вэксуинга» опасались, что пастообразный топливный заряд, достаточно упругий при небольшой нагрузке, «потечет» под воздействием ускорений в процессе работы двигателей первой и второй ступеней РН. Соответствующие эксперименты показали, однако, что опасный уровень перегрузок существенно превышает действительный.

1 ... 7 8 9 10 11 ... 14 ВПЕРЕД
Комментариев (0)
×