Александр Окороков - Затонувшие корабли. Затопленные города

На нашем литературном портале можно бесплатно читать книгу Александр Окороков - Затонувшие корабли. Затопленные города, Александр Окороков . Жанр: Морские приключения. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Александр Окороков - Затонувшие корабли. Затопленные города
Название: Затонувшие корабли. Затопленные города
Издательство: ИИА "Евразия+"
ISBN: нет данных
Год: 1996
Дата добавления: 3 август 2018
Количество просмотров: 253
Читать онлайн

Помощь проекту

Затонувшие корабли. Затопленные города читать книгу онлайн

Затонувшие корабли. Затопленные города - читать бесплатно онлайн , автор Александр Окороков

Магниторазведка основана на измерении силы магнитного поля Земли. Как известно, скопления содержащих железо предметов вызывают изменения величины этого поля (аномалию). Форма и размер аномалии дают представление о количестве металла и о глубине его залегания. Наиболее сильными магнитными свойствами обладают предметы из железа. Однако и деревянные части кораблей содержат в себе определенное количество субстанций железа, что дает возможность с помощью прибора} определить их точное местонахождение. Керамические изделия, подверженные при обжиге воздействию высоких температур, также содержат в себе частицы окиси железа, которые ориентированы по направлению магнитного поля Земли. Каждый крупный керамический сосуд имеет собственное поле, которое можно сравнительно легко обнаружить в грунте. Магнитометр состоит из датчика, самописца (или цифрового индикатора), соединительного кабеля и блока питания. Все эти части портативны и легко размещаются практически на любом поисковом судне. Обычно датчик буксируется за судном, хотя при работах на небольшой глубине его монтируют на кронштейне, укрепленном на носу лодки, или даже подвешивают на вертолете.

Используя прибор, можно, например, с расстояния 120-180 м зарегистрировать крупный стальной обломок, разбросанные по дну якоря и пушки с 80-100 м, отдельно лежащую пушку с 30 м, а небольшой железный предмет на расстоянии 3-5 м.

Другим прибором для поиска затонувших объектов является гидролокатор, который позволяет получить запись рельефа морского дна. В приборе для определения профиля дна используются акустические импульсы низкой частоты, которые проникают в осадочный слой. Импульсы направляются вертикально вниз, и по разнице между поглощенной и отраженной от границ раздела различных типов пород энергии можно получить «поперечный разрез» дна с различными слоями отложений и скальных пород, на котором будут видны и погребенные обломки корабля.

Наконец искомый объект найден и можно подобраться к желанному грузу. Но не тут-то было. «Я не знаю ничего более утомительного, чем археологические работы, проводимые по «всем правилам», - предвосхищает ваше желание Бернард Дешемотт, известный подводник, соратник Жака Ива Кусто, - особенно если их приходится выполнять на глубине 10-12 метров под водой. Когда занимаешься раскопками каждодневно, эта работа и на суше не вызывает особого восторга, но на воздухе можно хотя бы перекинуться шуткой с коллегой, вместе помозговать над трудной проблемой, неустанно просеивая сквозь сито песок и ожидая Открытия, которое заставит все начать с нуля. А попробуйте-ка пошутить, изъясняясь жестами и ощущая на макушке тяжесть моря, на носу стеклянную маску, а во рту мундштук трубки, по которой поступает воздух… А нам приходится проводить на дне. от трех до пяти часов в день!»

Однако не только отсутствие собеседника усложняет исследования подводного археолога. Вся трудность в самой работе. Надо разбить сетку координат, благодаря которой на плане точно фиксируется местоположение находок, смонтировать приспособления для установки фото-, кино- и видеоаппаратуры, подготовить условия для работы водолазов и проведения раскопок. И все это под водой, в среде в несколько раз плотнее воздуха и, как правило, при плохой видимости. Да еще не дай Бог, если рядом бродят какие-нибудь акулы-людоеды.

Сами раскопки производятся с помощью эжекторов или грунтососов послойно. На каждом вскрытом уровне ныряльщики обязаны повторять одну и ту же монотонную процедуру - запись координат, регистрация, фотографирование, зарисовка. Только после этого ученые могут получить физическое удовольствие пощупать найденные предметы, с тысячами предосторожностей высвободить их из панциря донных осадков, положить в корзину и отправить на поверхность. И вот здесь начинается самое сложное - сохранение находок.

Прежде чем вкратце проиллюстрировать методы консервационных работ, хотелось бы отметить, что различные материалы, попавшие в море, ведут себя далеко не одинаково. Чугун, например, превращается в окись железа, медь и медные сплавы сильно коррозируют, латунь реагирует по-разному (чем массивнее предмет, тем дольше он сопротивляется), серебро легко превращается в сульфиды и хлориды серебра, в результате чего образуется характерная черная масса, чистое золото, на счастье одержимых кладоискателей, не подвергается электрохимическому воздействию, твердый цинк, применявшийся в старину для изготовления бытовых предметов, ведет себя неодинаково: его состояние зависит от местных условий, наконец, свинец в твердом виде окислятся лишь поверхностно.

Не меньше проблем возникает и с изделиями из дерева. Такой предмет порой сохраняет свою первоначальную форму, но его состав, как правило, претерпевает существенные изменения. Извлеченный из воды, под действием воздуха и солнца он быстро высыхает, уменьшается в размерах и деформируется, а порой полностью разрушается.

Уже из этого незначительного перечня изменений, которым подвергаются находки, изготовленные из различных материалов, можно представить объем работ, предстоящий реставраторам. Не следует забывать и то, что с «целого» корабля поднимается не одна тысяча предметов, которые длительное время «разлагались» рядом, тем самым значительно влияя друг на друга.

Автору не хотелось бы утомлять читателей перечнем химикатов и сухих формул, поэтому ограничимся лишь общим обзором современных методов консервационных работ.

Начнем с дерева.

Первым этапом консервации древесины, насыщенной водой, является определение ее сорта, свойств, объема разрушений, наличие тех или иных загрязнений. Только после этого начинается обработка.

Существует множество методов консервации дерева. Некоторые способы оказались неэффективными и от них отказались, другие, наоборот, развиваются и модифицируются. Однако, по мнению Ричарда Кларка, специалиста из Национального морского музея в Лондоне, в последнее время наблюдается возврат к методам с использованием полиэтиленгликоля (ПЭГ), который был применен, в частности, при консервации «Васы».

Он заключается в том, что спиртовой раствор ПЭГ постепенно пропитывает дерево, вытесняя воду. Однако этот метод не идеален: дерево, предельно насыщенное ПЭГ, все же сохраняет в себе некоторое количество воды. Следовательно, возможно дальнейшее разрушение древесины.

Другой метод, с использованием гамма-лучей, был разработан, Центром атомной энергии в Гренобле (Франция). Он включает в себя пропитку дерева синтетическими смолами с дальнейшим гамма-облучением. Этот способ эффективен и недорог. Однако для объектов больших размеров он требует значительных лабораторных площадей, монтирования объемной установки.

Комментариев (0)
×