Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома

На нашем литературном портале можно бесплатно читать книгу Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома, Несса Кэри . Жанр: Биология. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома
Название: Мусорная ДНК. Путешествие в темную материю генома
Издательство: -
ISBN: -
Год: -
Дата добавления: 13 февраль 2019
Количество просмотров: 241
Читать онлайн

Помощь проекту

Мусорная ДНК. Путешествие в темную материю генома читать книгу онлайн

Мусорная ДНК. Путешествие в темную материю генома - читать бесплатно онлайн , автор Несса Кэри

Ученые годами искали мутацию, которая служит причиной ПЛЛМД. В конце концов они выяснили, что и здесь дело в повторах одного элемента ДНК-последовательности. Однако этот элемент — не трехбуквенный фрагмент, как в случаях миотонической дистрофии, синдрома ломкой X-хромосомы или атаксии Фридрейха. Речь идет о фрагменте длиной более 3000 букв. Можно назвать его блоком. У тех, кто не страдает ПЛЛМД, число таких блоков, следующих один за другим, составляет от 11 до примерно 100. Но у пациентов с ПЛЛМД количество этих блоков меньше — максимум 10. Такого никто не ожидал. Но больше всего ученых поразило то, что они лишь с большим трудом сумели отыскать ген, расположенный близ участка мутации.

За последнее столетие генетические заболевания позволили нам совершить впечатляющие открытия в биологии. Далеко не всегда очевидно, сколько усилий нужно приложить, чтобы добыть те или иные знания в этой области. Чтобы выявить мутации, о которых мы только что говорили, зачастую требовалось больше 10 лет труда значительного количества специалистов. Тут многое зависело от того, сумеют ли ученые получить доступ в семьи, которые согласятся дать образцы крови и откроют свою фамильную медицинскую историю.

Такого рода анализ долгое время был очень затруднителен во многом из-за того, что ученые при этом обычно искали очень маленькое изменение на очень обширном пространстве: это как искать один определенный желудь в лесу. Процесс значительно упростился с 2001 года, когда был расшифрован геном человека. Геном человека — вся последовательность нуклеотидных оснований ДНК, содержащейся в наших клетках.

Благодаря проекту «Геном человека» мы знаем, как гены располагаются друг относительно друга, а кроме того, теперь нам известны их нуклеотидные последовательности. Не забудем и о колоссальном прогрессе в технологиях, которые применяются для секвенирования (расшифровки) ДНК. Все это позволило быстрее и дешевле отыскивать мутации, которые служат причиной даже самых редких генетических заболеваний.

Однако полная расшифровка генома человека позволила не только с относительной легкостью выявлять мутации, вызывающие болезни, — она коренным образом меняет представления о многих основополагающих идеях, долгие годы господствовавших в биологии.

Исследуя работу наших клеток, почти каждый ученый последних шести десятилетий обращал особое внимание на функции и воздействие белков. Однако как только удалось секвенировать человеческий геном, специалисты оказались перед дилеммой, которая их немало озадачила. Если белки играют такую важную роль решительно во всех жизненных процессах, почему же тогда лишь около 2% нашей ДНК предназначено для кодирования аминокислот, этих кирпичиков для строительства белков? Чем, скажите на милость, занимаются остальные 98% ?

Глава 2. Когда темная материя становится совсем темной

Ученых поразило, что такая огромная доля генома не кодирует никаких белков. Однако больше всего их удивило не само это явление, а его размах. Специалисты уже много лет знали о существовании участков ДНК, не кодирующих белки. Собственно, это стало одним из первых больших сюрпризов после открытия структуры ДНК. Однако тогда вряд ли кто-нибудь представлял, какими важными окажутся эти области ДНК, и вряд ли кто-нибудь ожидал, что они помогут объяснить причины некоторых генетических заболеваний.

Сейчас не помешает чуть подробнее вглядеться в строительные блоки нашего генома. Напомним, ДНК — своего рода алфавит, к тому же весьма простой. В нем всего четыре буквы — А, Г, Т и Ц (аденин, гуанин, тимин и цитозин). Их называют нуклеотидными основаниями. Этот простенький алфавит несет в себе невероятное количество информации. Человек наследует 3 миллиарда оснований, составляющих наш генетический код, от матери, и аналогичный набор оснований от отца. Представьте себе ДНК как веревочную лестницу, где каждая ступенька — нуклеотидное основание, причем между соседними ступеньками 25 сантиметров. Такая лестница протянулась бы на 75 миллионов километров, то есть приблизительно от Земли до Марса (впрочем, тут многое зависит от того, где эти планеты будут располагаться на своих орбитах в тот момент, когда мы протянем эту воображаемую лестницу).

Еще одно сравнение. Полный корпус произведений Шекспира содержит в себе, по уверениям специалистов, 3 миллиона 695 тысяч 990 букв1. Представим себе, что все это собрали в один толстенный том. Мы наследуем от матери текст объемом чуть больше 811 таких книг. И столько же — от отца. Это, прямо скажем, немалый объем информации.

Если продолжать аналогию с алфавитом, можно заметить, что алфавит ДНК кодирует лишь трехбуквенные слова. Каждое такое слово соответствует определенной аминокислоте — строительному блоку, из которых конструируются белки. Ген можно представить себе как предложение из таких трехбуквенных слов. Такая фраза кодирует последовательность аминокислот, из которых слагается тот или иной белок. (См. рис. 2.1.)


Рис. 2.1. Связь между геном и белком. Каждая трехбуквенная последовательность в гене кодирует один строительный блок соответствующего белка.


В каждой клетке обычно содержится по две копии каждого гена. Одну копию мы наследуем от матери, одну — от отца. Но хотя в клетке лишь две копии каждого гена, она способна создавать тысячи и тысячи белковых молекул, кодируемых тем или иным геном.

Как клетке это удается? В процесс экспрессии генов встроено два механизма амплификации (увеличения числа копий). Последовательность нуклеотидных оснований в ДНК не служит непосредственным шаблоном для создания белка. Клетка создает копии гена. Эти копии очень похожи на исходный ген ДНК, однако не идентичны ему. Они слегка отличаются от него по химическому составу. Их называют РНК (рибонуклеиновая кислота, тогда как ДНК — дезоксирибонуклеиновая кислота). Еще одно отличие: у РНК вместо основания Т (тимин) — основание У (урацил). ДНК состоит из двух нитей, соединенных парами оснований. Чем-то это похоже на железнодорожные пути. Рельсы удерживаются вместе благодаря тому, что нуклеотидное основание одного рельса связывается с основанием другого, как если бы основания пожимали друг другу руки. Такие рукопожатия подчиняются определенным правилам. Т пожимает руку только А, а Ц — лишь Г. Благодаря этому распределению связей ученые часто описывают ДНК как совокупность нуклеотидных пар. РНК — однонитевая молекула («монорельс»)[2]. Главные отличия между ДНК и РНК показаны на рис. 2.2. Клетка способна быстро сделать тысячи РНК-копий гена ДНК, и это — первая амплификационная стадия экспрессии гена.


Рис. 2.2. Вверху: грубая схема ДНК (молекулы, состоящей из двух нитей). Основания (А, Г, Т и Ц) удерживают две нити вместе, попарно соединяясь. При этом А всегда соединяется только с Т, а Г всегда соединяется только с Ц. Внизу: грубая схема РНК (однонитевой молекулы). Ее «хребет» по химическому составу чуть отличается от ДНК (поэтому полоска закрашена другим цветом). Вместо основания Т у РНК — основание У.


РНК-копии гена уносятся от ДНК в другую часть клетки — цитоплазму. В этой клеточной области молекулы РНК действуют как своего рода шаблоны (матрицы) для аминокислот, которые образуют белок. Каждая молекула РНК может много раз выступать в роли такого шаблона, что и представляет собой вторую стадию амплификации при экспрессии гена. (См. рис. 2.3.)

Можно прибегнуть к аналогии с узором для вязания, которую мы уже использовали в первой главе. Ген ДНК — исходный узор на листе бумаги. Этот узор можно много раз ксерокопировать (сравните с производством РНК). Полученные копии можно послать множеству вязальщиц, каждая из которых может много раз воспроизвести один и тот же узор (сравните с синтезом белка). Простая, но эффективная модель. Такая молекула РНК действует как своего рода посланец. Она несет информацию о генетической последовательности от ДНК к «сборочному цеху», где синтезируются белки. Поэтому она и называется информационной РНК (другое название — матричная РНК).


Рис. 2.3. Единичная копия гена ДНК в ядре клетки используется как шаблон для создания множества копий молекулы информационной РНК. Эти молекулы РНК выводятся за пределы ядра. Затем каждая может играть роль инструкции для производства белка. Каждая молекула информационной РНК способна создавать множество копий одного и того же белка. Таким образом, при создании белка на основе кода ДНК имеют место две стадии амплификации. Для простоты картины здесь показана лишь одна копия данного гена, хотя обычно в клетке их две — по одной от каждого из родителей.


Отсекая бессмыслицу

Комментариев (0)
×