Евгений Айсберг - Телевидение?.. Это очень просто!

На нашем литературном портале можно бесплатно читать книгу Евгений Айсберг - Телевидение?.. Это очень просто!, Евгений Айсберг . Жанр: Техническая литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Евгений Айсберг - Телевидение?.. Это очень просто!
Название: Телевидение?.. Это очень просто!
Издательство: -
ISBN: нет данных
Год: -
Дата добавления: 14 февраль 2019
Количество просмотров: 306
Читать онлайн

Помощь проекту

Телевидение?.. Это очень просто! читать книгу онлайн

Телевидение?.. Это очень просто! - читать бесплатно онлайн , автор Евгений Айсберг
1 ... 6 7 8 9 10 ... 53 ВПЕРЕД

Л. — ??

Н. — Разве это не преобразователь частоты, преобразующий очень высокую частоту ультрафиолетовых лучей в менее высокую частоту видимого света?..

Л. — Ты совершенно прав. Но ближе к делу. У нас есть электронная пушка, посылающая свои снаряды на экран, который начинает светиться. Так как при стрельбе происходит рассеивание, на экране образуется широкое световое пятно. Пробовать получить изображение при помощи этого пятна было бы так же бесполезно, как пытаться нарисовать картину при помощи платяной щетки.



ЭЛЕКТРОННАЯ ЛИНЗА

Н. — Вот мы и вернулись опять к проблеме фокусировки. Как ты думаешь пробудить в электронах дух солидарности?

Л. — Я могу это сделать при помощи «электронной линзы». В этом термине нет ничего неправильного, потому что электронные лучи на пути от катода до экрана ведут себя более или менее подобно световым. Они подчиняются законам «электронной оптики», которая имеет много общего с разделом физики, рассматривающим поведение световых лучей.

Н. — Уж не хочешь ли ты мне сказать, что электронной линзой служит диск из двояковыпуклого стекла? Ведь электроны не могли бы пройти через него.



Л. — Подобную линзу получают, помещая за первым анодом второй, имеющий более высокий потенциал (а иногда даже и третий). Электрическое поле между анодами действует на элементарные электрические заряды, какими являются электроны, изменяя их траекторию и стремясь направить их к оси трубки. И вот таким-то образом электроны образуют сходящийся пучок (рис. 14).



Рис. 14. Электростатическая фокусировка электронного пучка.

1 — управляющий электрод; 2 — первый анод; 3 — второй анод.


Н. — А наш триод превращается в тетрод или даже пентод?

Л. — У него будут в некоторой степени свойства тетрода. В частности, изменения напряжения на последнем аноде почти не будут оказывать влияния на количество электронов, образующих электронный луч, т. е. на интенсивность тока в вакууме.

Н. — Какие же напряжения прикладываются к электродам?

Л. — На первом аноде относительно небольшое напряжение, порядка 220 в. Зато второй анод находится под высоким напряжением в несколько тысяч вольт. При этом напряжение на первом аноде можно изменять, влияя таким образом на распределение электрических полей и тем самым изменяя «кривизну» электронной линзы.

Н. — Значит, электронная линза совершеннее обычной оптической линзы?

Л. — Нет, не всякой. Вот, например, глазной хрусталик тоже обладает способностью изменять свою кривизну, чтобы приспосабливаться к рассматриванию близких и удаленных предметов.

Н. — Значит, регулируя напряжение на первом аноде, изменяют фокусировку пучка?

Л. — Совершенно верно. Стараются получить очень узкий пучок, дающий на экране светящееся пятно очень небольших размеров, которое и является элементом растра, определяющим размер элемента изображения.



ПЕЧАЛЬНАЯ УЧАСТЬ ЭЛЕКТРОНОВ

Н. — По что делается с электронами, достигшими экрана? Нужно, чтобы они вернулись к источнику высокого напряжения, каков бы он ни был.

Л. — Вот вопрос, который раньше мало интересовал изготовителей трубок. Электроны, падающие на экран с большой скоростью…

Н. — Какого порядка?

Л. — Эта скорость зависит от напряжения, приложенного к последнему аноду, и пропорциональна квадратному корню из этого напряжения. Так, при 10 000 в на этом аноде электроны будут иметь скорость около 60 000 км/сек. Но при 20 000 в она едва превзойдет 80 000 км/сек.

Н. — Какой же смысл увеличивать эту скорость?

Л. — Чем сильнее электроны ударяются об экран, тем ярче он светится.

Н. — Вернемся, с твоего разрешения, к электронам, которые ударяются об экран. Что с ними происходит?

Л. — Как камень, с силой брошенный в воду, поднимает фонтан брызг, электроны выбивают другие электроны из люминесцентного слоя. Эти электроны…



Н. — …вторичные.



Л. — Ну да, я вижу, ты ничего не забыл из наших прежних бесед. Эти вторичные электроны медленно и как умеют передвигаются к аноду. По крайней мере, так было в старых трубках. В наше время им облегчают обратный путь, покрывая внутренние стенки колбы между экраном и выводом последнего анода проводящим графитовым слоем. Я должен тебе, кстати, заметить, что вывод последнего анода производится через стекло в конической части колбы (рис. 15).



Рис. 15. Электронно-лучевая трубка с фокусировкой посредством электронной линзы. Высокое напряжение на последнем аноде требует хорошей изоляции; поэтому его вывод осуществляется вне цоколя трубки.

1 — управляющий электрод; 2 — первый анод; 3 — второй анод; 4 — проводящее покрытие.


Н. — А почему не через штырек цоколя?

Л. — Да потому, что из-за высокого напряжения на этом электроде его следует по возможности отдалить от других электродов.

Н. — Теперь я ясно представляю себе всю цепь. Электроны вылетают из катода, пролетают отверстия управляющего электрода и одного или нескольких анодов и попадают на какую-то точку экрана. Оттуда они движутся вдоль стенок по направлению к последнему аноду и через источник высокого напряжения возвращаются на катод. Я полагаю, что самая трудная часть пути — это та, которая ведет от пятна к краю экрана.

Л. — Верно, потому что люминесцентный слой очень далек от идеального проводника. Но в современных трубках на этот слой часто наносится очень тонкий зеркальный слой алюминия, сквозь который легко проходят электроны, вылетающие из электронной пушки, и который облегчает удаление вторичных электронов. Впрочем, истинная цель алюминиевого слоя — увеличить яркость изображения, отражая по направлению к зрителю ту часть световых лучей, которая без этого безвозвратно терялась бы для него, уходя внутрь трубки.



ПЯТНО ХОДИТ ВВЕРХ И ВНИЗ

Н. — Вот мы и владеем электронным карандашом, предназначенным для вычерчивания светящихся изображений на экране. Однако, чтобы рисовать, нужно сделать его подвижным. Как схватить этот невидимый пучок и манипулировать им по своему желанию?

Л. — Когда настоящая пушка выпускает снаряд, он следует по прямолинейной траектории?

Н. — Нет, конечно. Он описывает параболу, так как земное притяжение искривляет его траекторию по направлению к Земле.

Л. — Не видишь ли ты возможности воздействовать на электрон аналогичной силой, способной отклонить его от прямого пути?

Н. — Да, вижу. Можно было бы расположить под пучком положительно заряженный электрод, который притягивал бы электроны так же, как Земля притягивает снаряд. Таким образом, пучок искривился бы книзу.



Л. — Правильно! Можно поступить еще лучше, поместив одновременно над пучком второй, отрицательно заряженный электрод (рис. 16).



Рис. 16. Электростатическое отклонение. В соответствии со знаком напряжения на отклоняющих пластинах пятно отклоняется вниз или вверх.


Н. — Понимаю. Отталкивая электроны пучка, он дополнит действие электрода, помещенного внизу. Но два таких электрода в действительности образуют обкладки конденсатора.



Л. — Конечно. Заметь, впрочем, что на отклоняющие пластины нужно подавать не постоянное напряжение, так как, отклонившись от центра экрана, пятно займет неподвижное положение. Однако не это нам нужно. Что произойдет, если к двум отклоняющим электродам приложить переменное напряжение?

Н. — Во время полупериода, когда верхний электрод становится положительным, а нижний — отрицательным, пучок будет притягиваться вверх (отталкиваясь при этом снизу). Мы увидим, как пятно поднимается. Во время следующего полупериода верхний электрод, становясь отрицательным, его оттолкнет, в то время как он будет притягиваться к нижнему электроду, который станет положительным. Наше пятно, следовательно, переместится вниз.

Л. — Ты видишь, что пятно будет передвигаться туда и обратно вдоль вертикального диаметра экрана. И если частота переменного напряжения, приложенного к отклоняющим пластинам, превышает тридцать герц…

1 ... 6 7 8 9 10 ... 53 ВПЕРЕД
Комментариев (0)
×