Роберт Криз - Призма и маятник. Десять самых красивых экспериментов в истории науки

На нашем литературном портале можно бесплатно читать книгу Роберт Криз - Призма и маятник. Десять самых красивых экспериментов в истории науки, Роберт Криз . Жанр: Прочая научная литература. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале fplib.ru.
Роберт Криз - Призма и маятник. Десять самых красивых экспериментов в истории науки
Название: Призма и маятник. Десять самых красивых экспериментов в истории науки
Издательство: -
ISBN: нет данных
Год: -
Дата добавления: 31 январь 2019
Количество просмотров: 234
Читать онлайн

Помощь проекту

Призма и маятник. Десять самых красивых экспериментов в истории науки читать книгу онлайн

Призма и маятник. Десять самых красивых экспериментов в истории науки - читать бесплатно онлайн , автор Роберт Криз

153

Он создал электронно-оптическое устройство с электронным зондом, с помощью которого на серебряный субстрат наносился слой Стюарда в форме щели. С целью нанесения нескольких (до десяти) щелей рядом он снабдил названный инструмент конденсатором, чтобы располагать электронный зонд вертикально по отношению к направлению щелей. Определив необходимое время экспонирования для получения слоев Стюарда 10–50 нм толщиной, Йонссон смог проделать нужные ему щели в медном покрытии. Но как удалить их с субстрата и как удалить серебро и полимеризат из щелей? И тут Йонссон заметил, что можно воспользоваться пинцетом, чтобы переместить медно-серебряную фольгу со стеклянной пластины в направлении щелей, не повредив щелей. Когда он проделал щели над отверстием в 0,5 мкм и посмотрел на них в микроскоп, он заметил, что в щелях не было никаких загрязнений. В ходе процесса печатания электронный луч закрепил слои Стюарда на субстрате из стекла и серебра, на котором они оставались даже после удаления медной фольги. Таким образом, как оказалось, две самые значительные проблемы при проделывании щелей не были непреодолимым препятствием.

154

В 1972 году они получили первую интерференционную структуру с помощью электронной бипризмы, вставленной в специальный патрон электронного микроскопа Siemens Elmiskop 1A , снабженного изготовленной по заказу заостренной нитью. Работа получила премию Итальянского физического общества за лучший учебный эксперимент.

155

Merli P. G., Missiroli G. F., Pozzi G. American Journal of Physics. 1976. Vol. 44. P. 306–307.

156

Адрес веб-сайта: www.bo.imm.cnr.it.

157

Tonomura A., Endo J., Matsuda T., Kawasaki T., Ezawa H. Demonstration of Single-Electron Buildup of an Interference Pattern // American Journal of Physics. 1989. Vol. 57. P. 117–120.

158

Доклад Тономуры в Королевском институте можно просмотреть по адресу: http://www.vegaorg.uk/series/vri/vri4/index.php. См. также: Rodgers P. Who Performed the Most Beautiful Experiment in Physics? // Physics World. 2002, September.

159

Источником этой истории является древнеримский архитектор и механик Витрувий. Цитируемый текст взят из Витрувий. Об архитектуре. IX, 0, 10, пер. Ф. А. Петровского. См. также: ст. «Архимед» в Dictionary of Scientific Biography / C. C. Gillispie, (ed.). New York: Scribner, 1970–1980.

160

Holmes F. L. Meselson, Stahl, and the Replication of DNA: A History of The Most Beautiful Experiment in Biology. New Haven: Yale University Press, 2001.

161

См.: Blum D. Love at Goon Park: Harry Harlow and the Science of Affection. Cambridge, Mass.: Perseus, 2002.

162

Garcia J., Koelling R. Relation of cue to consequence in avoidance learning // Psychonomic Science. 1966. Vol. 4. P. 123–124.

163

Доступно на веб-сайте http://www.aps.org/apsnews/0101/010106.html.

164

Информация заимствована из неспециального описания в кн.: Crease R. P., Mann C. C. The Second Creation: Makers of the Revolution in Twentieth-Century Physics. New York: Macmillan, 1986. P. 164–165.

165

Популярное описание эксперимента приводится там же на с. 206–208.

166

Популярное описание эксперимента см.: Crease R. P. Making Physics: A Biography of Brookhaven National Laboratory, 1946–1972. Chicago: University of Chicago Press, 1999. P. 248–250.

167

Цит. по: Там же. P. 400.

168

Точное значение аномального магнитного момента мюона, как можно понять по многочисленным попыткам измерить его, несмотря на все связанные с этим сложности, принадлежит к числу наиболее важных величин в современной физике. Причина заключается в том, что любое несоответствие между теоретически установленной величиной и результатами экспериментов предоставляет крайне важную информацию относительно того, что находится за пределами стандартной модели физики элементарных частиц – дисциплины, созданной во второй половине ХХ века и описывающей поведение фундаментальных строительных блоков, из которых сложена материя, включая все известные частицы и большинство сил, на них воздействующих. См.: Morse W. et al. Precision Measurement of the Anomalous Magnetic Moment of the Muon // Proc. Of the XVIII Inter. Conf. on Atomic Physics / H. Sadeghpour, E. Heller, D. Pritchard (eds.). World Scientific Publishing, 2002.

169

Все мюоны обладают постоянным собственным магнитным моментом, пропорциональным спину. При равномерном движении частицы по круговой траектории в однородном магнитном поле возникает прецессия магнитного момента, спин начинает себя вести словно собирающийся свалиться волчок. Частота прецессии определяется гиромагнитным отношением, или « g -фактором». В классической физике, где положение обладающей массой частицы в пространстве и времени точно определено, g -фактор равен единице. Когда Поль Дирак строил свою теорию электрона, в которой учитывались бы и квантовые, и релятивистские особенности, вычисленный им g -фактор оказался равным в точности двум. Но в соответствии со знаменитым принципом неопределенности Гейзенберга в квантовой механике невозможно приписать мюону (или любой другой элементарной частице) точное местоположение, к тому же он всегда окружен облаком призрачных и короткоживущих виртуальных частиц, которые он постоянно излучает и поглощает. Из-за этого его g -фактор слегка отличен от двух. Однако вычисления его с помощью теории возмущений давали бесконечность уже в первом порядке, и только с созданием квантовой электродинамики Фейнманом, Швингером и Томонагой его удалось посчитать. В их теории g -фактор равнялся 2,002. В ходе эксперимента, получившего название g-2 , отклонения g -фактора от 2 измеряются с точностью, превосходящей одну миллионную. Величина этого отклонения чрезвычайно важна для физиков, так как она может сообщить им о существовании новых, еще не открытых частиц, что, в свою очередь, даст понять, насколько правильна стандартная модель элементарных частиц. Если полученная экспериментальным путем величина полностью совпадет с полученной в теории, это будет означать, что стандартная модель подтверждается экспериментально (и ею можно пользоваться для насущных – по крайней мере, на данный момент времени – целей) и что потребности в создании новой теории пока нет. Отсутствие такого соответствия будет означать, что стандартная модель не работает и что в ней существует некая «прореха», которая может стать тропой к созданию новой физики. Измерение прецессии вектора магнитного момента мюона требует очень сложного оборудования. Его разработка и изготовление подразумевает многолетнюю выверку тысяч высокоточных его составных частей и затем настройку их на совместную работу. А это требует невероятного числа отдельных компромиссов, так как каждая отдельная часть оборудования неизбежно воздействует на все остальные. Мюоны создаются брукхейвенским ускорителем элементарных частиц, называемым AGS. Протоны из ускорителя ударяются о мишень, отчего рождаются струи других частиц, называемых пи-мезонами (пионами), а те, в свою очередь, распадаются на мюоны. Эти мюоны поляризованы, то есть все их спины направлены вдоль одной оси. Оказавшись внутри громадного сверхпроводящего электромагнита, мюоны начинают двигаться по круговым орбитам внутри вакуумной камеры. Электромагнит, изготовленный в Брукхейвенской лаборатории для описываемой цели, – самый большой в мире. Он настолько больше своих предшественников, что многие полагали невозможным само его создание. Его магнитное поле должно быть равномерным и однородным, и ученые постоянно проверяют его на наличие случайных флуктуаций. Один из методов проверки заключается в использовании особой сенсорной тележки, изготовленной исследователями, которая совершает периодические объезды всей вакуумной камеры. Как-то исследователи установили на ней крошечную видеокамеру и засняли видео ее часовой пробежки, подобной путешествию по длинному и однообразному туннелю подземки.

170

При распаде мюона образуется электрон (и два нейтрино), однако направление его движения не случайно. Из-за нарушения четности электроны летят преимущественно по направлению спина мюона. Эти электроны регистрируются детекторами, находящимися внутри кольца.

171

Тоитиро Киносита, физик-теоретик из Корнелльского университета, провел более десятилетия, продираясь сквозь бесчисленные уравнения и используя самые быстрые компьютеры, чтобы получить максимально точное значение этой величины.

172

В частности, этот эксперимент позволяет проверить одно из важных предсказаний теории относительности: мюоны движутся со скоростью, близкой к скорости света, в результате чего происходит существенное замедление часов в их собственной системе отсчета: 2,2 микросекунды их жизни соответствуют 64 микросекундам по лабораторным часам. Именно замедление часов, собственно, и делает данный эксперимент возможным.

Комментариев (0)
×